Preprint
Article

A Set-theoretic Approach to Modeling Network Structure

Altmetrics

Downloads

150

Views

231

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

27 March 2021

Posted:

30 March 2021

You are already at the latest version

Alerts
Abstract
Three computer algorithms are presented. One reduces a network $\CALN$ to its interior, $\CALI$. Another counts all the triangles in the network, and the last randomly generates networks similar to $\CALN$ given just its interior $\CALI$. But these algorithms are not the usual numeric programs that manipulate a matrix representation of the network; they are set-based. Union and meet are essential binary operators; contained_in is the basic relational comparator. The interior $\CALI$ is shown to have desirable formal properties and to provide an effective way of revealing ``communities'' in social networks.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated