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Abstract: Coronavirus disease (COVID-19) is a contagious respiratory disease that is causing signif-
icant global morbidity and mortality. Understanding the impact of the Severe Acute Respiratory 
Syndrome Coronavirus-2 (SARS-CoV-2) infection on the host metabolism is still in its infancy but 
of great importance. Herein, we investigated the metabolic response during viral shedding and 
post-shedding in an asymptomatic SARS-CoV-2 ferret model (n=6) challenged with two SARS-CoV-
2 isolates. Virological and metabolic analyses were performed on (minimally invasive) collected oral 
swabs, rectal swabs, and nasal washes. Fragments of SARS-CoV-2 RNA were only found in the nasal 
wash samples in four of the six ferrets, and in the samples collected 3 to 9 days post-infection (re-
ferred to as viral shedding). Central carbon metabolism metabolites were analyzed during viral 
shedding and post-shedding periods using a dynamic Multiple Reaction Monitoring (dMRM) da-
tabase and method. Subsequent untargeted metabolomics and lipidomics of the same samples were 
performed using a Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-
QToF-MS) methodology, building upon the identified differentiated central carbon metabolism me-
tabolites. Multivariate analysis of the acquired data identified 29 significant metabolites and three 
lipids that were subjected to pathway enrichment and impact analysis. The presence of viral shed-
ding coincided with the challenge dose administered and significant changes in the citric acid cycle, 
purine metabolism, and pentose phosphate pathways, amongst others, in the host nasal wash sam-
ples. An elevated immune response in the host was also observed between the two isolates studied. 
These results support other reported metabolomic-based findings found in clinical observational 
studies and indicate the utility of metabolomics applied to ferrets for further COVID-19 research 
that advances early diagnosis of asymptomatic and mild clinical COVID-19 infections, in addition 
to assessing the effectiveness of new or repurposed drug therapies.  

Keywords: Animal model; COVID-19; ferret; lipidomics; metabolomics; SARS-CoV-2; systems biol-
ogy. 

1. Introduction 
The novel coronavirus disease, COVID-19, is currently one of the most significant 

health issues globally and the causative virus SARS-CoV-2 is still evolving, more than 15 
months since the first reported case in Wuhan, China. Although the mortality rate is rela-
tively low (2.1%), more than 3.25 million deaths have been reported worldwide as of 6 
May 2021 [1]. Furthermore, the world is bracing for a new wave of infections from more 
contagious and pathogenic SARS-CoV-2 variants arising from the Brazil, India, South Af-
rica, UK and the USA [2].    
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As the causative virus spreads through the respiratory system, the quickest and most 
employed method of diagnostics is based on the PCR testing of nasal and throat swabs, 
and less commonly used, anal swabs [3,4]. However, some of the predominant limitations 
of PCR methods, especially during the early stages of infection (< 1 week), include the 
time required for confirmation of infection (up to 72 hours) and the high technological 
inputs that are needed to perform the assay itself (i.e., PCR machines, primers, molecular 
probes among others) [5]. Other commonly used methods rely on the analysis of serology 
antibodies, and although cheaper and technically less challenging than PCR, they do not 
provide reliable results until the second week of infection, when the IgG and IgM anti-
bodies peak in serum samples [5,6]. The biggest hurdle for both assays is the monetary 
price associated with each test. Although some countries include these tests in national-
ized healthcare systems, the majority are expensive and can cost up to USD486 per assay 
[7,8]. Furthermore, people subjected to a COVID-19 assay are asked to isolate or quaran-
tine for a defined period until cleared, which is associated with an opportunity cost. This 
will increasingly become problematic if more regular testing is needed to ensure interna-
tional borders remain open, that are free from enforced 14-day mandated hotel quarantine 
[9]. As such, a deeper understanding of COVID-19 infections, and disease progression 
through to recovery is needed to ensure a new COVID-normal society can be reached [10];  
one that can capture asymptomatic and mild clinical infections and limit community 
transmission events.  

One avenue to better understand the progression of this novel disease, and to inform 
health management decisions that potentially guide isolation/quarantine protocols, is 
through a deeper analysis of COVID-19 infections using metabolomics [11]. Metabolomics 
has been rapidly advancing clinical health research and can detect the subtle biochemical 
changes caused by disease pathogenesis [12-15]. The wide biochemical screening and 
high-throughput nature of metabolomics can enable a deep biochemical analysis of a dis-
ease state to occur within hours rather than days [16]. As the central metabolic pathways 
are generally conserved during evolution, this approach enables better comparison and 
correlation between ex vivo models, in vivo models, and human clinical data. Harnessing 
these metabolic outputs can potentially lead to the discovery of signature metabolic bi-
omarkers relevant to pathogenesis that can be utilized for designing Point-of-Care (PoC) 
testing regimens for more rapid testing [17].  

Evidence from the literature suggests this potential could soon become a reality. For 
example, Bruzzone et al [18] performed NMR-based metabolomics and lipidomics on se-
rum samples from 398 COVID-19 acute phase patients. It was reported that high levels of 
ketone bodies (acetoacetic acid, 3-hydroxybutyric acid, and acetone) were used as an al-
ternative source of energy in COVID-19 patients [18]. The elevated levels of succinic acid 
and pyruvic acid were correlated with impaired central metabolism and/or mitochondrial 
metabolism. The presence of hepatic oxidative stress biomarker, 2-hydroxybutyric acid, 
revealed general metabolic stress in COVID-19 patients [18]. Shen et al [19] performed 
proteomic and metabolomic profiling of sera and detected dysregulated metabolites in-
volved in lipid metabolism. It was reported that the accumulation of steroid hormones 
including progesterone, androgens, and estrogens in COVID-19 contributed to macro-
phage modulation. Overmyer et al [20] identified lipid transport dysregulation and sets 
of covarying molecules that are strongly associated with the status and severity of 
COVID-19. Wu et al [21] found that the development of COVID-19 resulted in altered 
energy metabolism and hepatic dysfunction [21]. In the case of hepatic dysregulation, car-
bamoyl phosphate of the urea cycle was the affected metabolite and was severely down-
regulated in fatal cases [21]. Here, Wu et al. stated that a significant difference in guano-
sine monophosphate was observed between healthy subjects and COVID-19 patients and 
that levels were also significantly different between mild and fatal cases [21].  

While these metabolomics studies to date have all been reported from human obser-
vational studies involving infected COVID-19 patients, the variance in human popula-
tions, multiple contributing (health-related) co-factors, and the lack of control on external 
environmental conditions, means that more work is still needed to better understand and 
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characterize these changes at the biochemical level in humans. An alternative approach is 
to investigate COVD-19 using an animal model in the first instance [22], exploring the 
infection interactome and characteristics at a level of (‘controlled’) detail and complexity 
not possible in an observational study that involves people, with the aspirational goal to 
translate those animal model findings into human clinical trials for validation and bench-
marking. A similar approach has been taken in the development and efficacy assessment 
of novel vaccine and drug therapeutics for COVID-19 [23] and influenza [12]. As such, 
here we aimed to explore COVID-19 using an established (asymptomatic/mild infection) 
SARS-CoV-2 ferret model [24,25], specifically looking at the changes in the metabolome 
during- and post-shedding from a range of commonly collected (and minimally-invasive) 
sample types; i.e., those samples typically collected when diagnosing humans for COVID-
19, specifically: nasal washes, oral swabs, and rectal swabs. This study also included an 
assessment of two locally acquired SARS-CoV-2 isolates that were administered at differ-
ent challenge dosages to simulate an asymptomatic/mild infection. Through the utility of 
an established asymptomatic/mild infection animal model, we aim to demonstrate the 
value of metabolomics for informing better clinical diagnosis and facilitating therapeutic 
development via non-invasive sampling.  

2. Results and Discussion  
2.1. Determination of virus shedding 

Virus shedding from ferrets challenged with two locally acquired SARS-CoV-2 iso-
lates, betaCoV/Australia/SA01/2020 (SA01) and betaCoV/Australia/VIC01/2020 (VIC01), 
was determined from nasal washes and, oral and rectal swabs by quantitative-PCR 
(qPCR). SARS-CoV-2 RNA was detectable in the nasal washes collected from four of the 
six ferrets on 3, 5, 7, and 9 days post-infection (dpi) (Figure 1). Viral RNA was only de-
tected in one oral swab sample (9 dpi) from one of the ferrets (data not shown); no virus 
RNA was detected in the rectal swabs in any ferret, at any time point. While the dose of 
the viral challenge differed between the two isolates, the 1x103 TCID50 VIC01 and 
6x105 TCID50 SA01 doses were deemed comparable and sufficient in providing positive 
viral replication in the nasal wash samples in Ferret 1, 2, 5, and 6 (Figure 1). This variation 
of infection dose between the two isolates was needed to ensure a qPCR positive infection 
response was observed in the ferrets when challenged (as determined by the viral shed-
ding data; Figure 1). A lower challenge dose of the SA01 isolate (5x102 TCID50 SARS-CoV-
2 SA01), which was considered comparable to the VIC01 dose, did not provide a positive 
qPCR result in any of the samples collected and these SA01-challenged ferrets (Ferrets 3 
and 4) were not used in the subsequent metabolomics analysis described below. It has 
been hypothesized that “the dose of virus in the initial inoculum” is linked to patient 
COVID-19 severity [26], and that the inoculum dose of variants and sub-types can alter 
this inoculum viral dose further [27]. Interestingly, once infected, asymptomatic patients 
have similar viral shedding profile [28]. This is evident in the viral load data of the ferret 
model used in this study. The challenge dose between the two isolates was altered to ob-
tain a positive asymptomatic response which was confirmed by qPCR. Once positive, the 
viral infection load was comparable irrespective of the original inoculum dose. The utility 
of the qPCR negative samples as a control was not considered in the statistical analysis. 
This is due to the samples numbers within this group being considered too small for a 
meaningful statistical analysis and the fact that these ferrets were challenged, albeit un-
successfully, they may be observed metabolic altered because of the failed challenge and 
not representative of a true negative control. 

These results indicate that nasal wash samples are the most appropriate sample type 
to detect changes in the biomolecules in ferrets resulting from a COVID-19 infection. 
Again, with the ferret model herein being representative of an asymptomatic/mild infec-
tion, the utility of nasal wash samples may pave the way forward for profiling and under-
standing the disease’s progression in similarly mild or asymptomatic human patients us-
ing a biofluid that is relatively easy to collect and minimally invasive to patients [29].   
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✱SARS-CoV-2 Virus Shedding

 
Figure 1. Determination of virus shedding in nasal washes collected from six ferrets challenged 
with SA01 (betaCoV/Australia/SA01/2020) and VIC01 (betaCoV/Australia/VIC01/2020) SARS-CoV-
2 isolates. Ferrets 1 and 2 were challenged with 1x103 TCID50 SARS-CoV-2 VIC01; Ferrets 3 and 4 
were challenged with 5x102 TCID50 SARS-CoV-2 SA01; Ferret 5 and 6 were challenged with 
6x105 TCID50 SARS-CoV-2 SA01. Nasal wash samples from SARS-CoV-2 VIC01 infected ferrets are 
annotated blue and SARS-CoV-2 SA01 infected Ferrets are annotated red. SARS-CoV-2 RNA was 
detected in nasal wash samples from ferrets 1, 2, 5, and 6 on 3, 5, 7, and 9 days post-infection (dpi). 
The dotted line box represents the limit of detection (LOD) of the qPCR assay. Part of this figure 
contains published data found in Marsh et al. [25]. 

No significant differences in terms of viral shedding and animal physiology were 
observed for the two isolates studied. Temperature and weight measurements were col-
lected daily and values remained within normal limits (see Marsh et al. for these data 
[25]). Based on these results, and accounting for the limitation of the animal ethics permit 
granting the utility of only six ferrets in this instance, the samples collected on 3, 5, 7, and 
9 dpi from the four infected ferrets were grouped as ‘shedding’ samples; and samples 
collected on 14, 19, and 25 dpi were grouped as ‘post-shedding’ samples. Whilst the in-
fected ferrets did not develop COVID-19 symptoms typically observed in humans, they 
do support viral infections with quantifiable outputs that make them appropriate for fur-
ther evaluation as a model of mild or asymptomatic human disease using metabolomics-
based approaches [25]. 
2.2. Central carbon metabolism variance in collected biological sample types 

Firstly, the infected ferret samples were subjected to a central carbon metabolism me-
tabolite screening via an LC-QqQ-MS method. The nasal washes, as well as the oral and 
rectal swabs, indicated the presence of 139 out of the 223 common polar compounds from 
the central carbon metabolism metabolites and related pathways. This metabolomics da-
taset was processed via an unsupervised statistical approach using Principal Component 
Analysis (PCA). Any sub-data clustering was not evident from the PCA analysis (Supple-
mentary Figure S1). Most of the samples were fitted within the DCrit threshold of the 
distance of observation (DModX) analysis, indicating them to be non-outliers (Supple-
mentary Figure S1). The grouped data, for the different non-invasive sample types (nasal 
washes, oral and rectal swabs), were then analyzed using a supervised partial least 
squares discriminant analysis (PLS-DA) to explore differences during viral shedding and 
non-shedding time points (Figure 2A, 2C, and 2E). Ideally, analysis of the individual sam-
pled time points would be more desirable here, however, due to the restricted number of 
animal replicates allowed by the animal ethics committee approving this work, it was 
necessary to pool sample data within these well-defined groups and restrict the 
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interpretations to explore viral shedding and post-shedding events. Consideration of the 
pre-challenge samples (-3 dpi) was determined not statistically significant. Overall, the 
PLS-DA analysis of nasal wash samples resulted in better separation (Q2 = 17.5%, Figure 
2A) of the grouped data when compared against rectal swabs (Q2 = -14.8%, Figure 2C) and 
oral swabs (Q2 = -13.4%, Figure 2E). Furthermore, the nasal wash PLS-DA dataset was the 
only model that proved marginally statistically significant (p-value = 0.103) when cross-
validated.  

Fold change (FC) analysis of the 139 central carbon metabolism metabolites revealed 
that the abundance of 68, 104, and 91 metabolites increased post-shedding in the nasal 
wash, oral swabs, and rectal swabs, respectively (FC >1.5). However, not all these features 
were found to be statistically significant (p-value ≤0.05). The metabolic variations between 
grouped data in each sample are shown in associated volcano plots in Figure 2. The vol-
cano plot shows a total of 17 statistically significant metabolites – the nasal washes con-
tained 3 and 7 elevated metabolites in shedding and post-shedding groups, respectively 
(Figure 2B); oral swabs contained 2 and 1 elevated metabolite in shedding and post-shed-
ding groups, respectively (Figure 2D); and rectal swabs contained 4 elevated metabolites 
in the shedding group only (Figure 2F). The number of metabolites, whose abundance 
significantly altered due to viral infection, was higher in the nasal washes than oral swabs 
or rectal swabs. The reduced number of significant metabolites in the latter (i.e., oral swabs 
and rectal swabs) may be an artifact of the ferrets being asymptomatic (i.e., no clinical 
signs of SARS-CoV-2 infection) and the majority of the viral replication occurring in the 
nasal wash samples, as confirmed by qPCR (Figure 1). These results further support the 
hypothesis that nasal washes are better suited for investigating the biochemistry of res-
piratory infections during and post-viral shedding.  
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Figure 2. Biplot overview (A, C, E) of central carbon metabolism metabolites and associated volcano plots (B, D, F) of the significant metabolites using a fold change threshold of 
≥1.5 or ≤0.66 and a p-value of ≤0.05. (A and B) nasal washes (R2X = 0.414, R2Y = 0.502, and Q2 = 0.175); (C and D) oral swabs (R2X = 0.428, R2Y = 0.336, and Q2 = -0.134), and (E and F) 
rectal swabs (R2X = 0.202, R2Y = 0.628, and Q2 = -0.148). The ellipse on the biplots represent the 100%, 75% and 50% correlation coefficient for measured metabolites. For panels (A), 
(C), and (E), the colored circles represent each analyzed sample, while the yellow-colored stars indicating the averaged group position for each sample cluster, and the white circles 
representing the distribution of central carbon metabolism metabolites between these groups. In the volcano plots (panels B, D, and F), the red circles represent significant metabo-
lites identified during shedding, the green circles represent significant metabolites post-shedding, and the white circles represent the non-significant metabolites. 
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2.3. Chemical and pathway enrichment analysis 
We performed a chemical similarity enrichment analysis using ChemRICH [30] on 

the central carbon metabolism dataset. This provided chemical class-based information of 
significantly altered metabolites in each sample type analyzed. ChemRICH identifies 
highly impacted compound classes through the generation of metabolite clusters based 
on chemical similarity and ontologies that are not defined by organism-specific metabolic 
pathways which can be inherently flawed [30]. ChemRICH analysis does not rely upon 
background databases for statistical calculations. The most impacted compound clusters 
are summarized in Figure 3 and further provided in Supplementary Table S1.  

In the oral swab samples, succinates, and, in the rectal swab samples, hexose phos-
phates and hydroxy acids, were significantly altered. Several more chemical classes were 
altered in the nasal wash samples including indoles, adenine nucleotides, succinates, de-
oxycytosine nucleotides, dicarboxylic acids, glutarates, guanine nucleotides, hydroxy ac-
ids, hydroxybenzoates, pentoses, pentanols, pentose phosphates, sialic acids, and tricar-
boxylic acids. The metabolites from these chemical clusters were used for pathway enrich-
ment analysis (Figure 4). We further subjected these data from each sample type for en-
richment analysis based on the Small Molecule Pathway Database (SMPDB) [31].  

Pathway analysis of the identified significant metabolites and their chemical cluster 
metabolite partners, from the shedding versus post-shedding groups, that were detected 
in nasal wash samples.  The pathway analysis indicated a significant (p-value ≤ 0.05) 
change in the citric acid cycle, purine metabolism, and pentose phosphate pathway. Out 
of 10 significant metabolites identified earlier, five are from the significant metabolite clus-
ters identified in the ChemRICH analysis (L-hydroxyglutaric acid, mevalonate, 2-deoxy-
D-ribose, inosine-5-monophosphate, and maleic acid). Several other important metabolic 
pathways including the Warburg effect, urea cycle, amino acid metabolism (aspartate, al-
anine, cysteine, glutamate, arginine, and proline), thiamine metabolism, phytanic acid me-
tabolism, butyrate metabolism, mitochondrial electron transport chain and ammonia re-
cycling were also identified as being significantly ((1.5 ≥ FC ≤ 0.66; p-value ≤ 0.05) altered 
in nasal wash samples, as indicated by the enrichment analysis (Figure 4A). Metabolites 
associated with glycolysis, amino sugar metabolism, pentose phosphate pathway, fruc-
tose and mannose degradation, and gluconeogenesis were significantly (p-value ≤ 0.05) 
altered in rectal swab samples (Figure 4B). None of these metabolites were represented in 
the ChemRICH analysis of the rectal swabs. The glutamate metabolism and arginine and 
proline metabolism were the most significantly perturbed pathways in oral swab samples 
(Figure 4C).  
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Figure 3. Identified metabolite clusters and the associated significant metabolites during viral shedding (green) and post-shedding 
(red) based on the acquired targeted central carbon metabolism metabolite dataset using the ChemRICH analysis tool. (A) nasal 
washes, (B) oral swabs, and (C) rectal swab. Altered significant metabolites (FC ≥ 1.5 or FC ≤ 0.66; p-value≤ 0.05) identified in each 
cluster are illustrated in the heatmaps. The significant metabolites during viral shedding event are represented in red and those 
during post-shedding are represented in green in the heatmaps. The unaltered metabolites are represented in white.

(A) 

(B) 

(C) 
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Figure 4. Significant pathways identified via the enrichment analysis of the identified significant metabolites and their associated 
ChemRICH chemical clusters during shedding and post shedding events of the (A) nasal wash, (B) oral swabs, and (C) rectal swab 
samples using MetaboAnalyst 5.0 (Enrichment Analysis Toolbox). Pathways annotated with white circles were enriched but found 
not to be significant.  

2.4. Untargeted metabolomics and lipidomics of nasal wash samples 
As the nasal wash samples proved most informative based on the qPCR viral shed-

ding and central carbon metabolism metabolite data, further analysis of these samples 
was then performed using an untargeted metabolite and lipid analysis using an LC-QToF-
MS method. The untargeted analysis of the nasal wash samples indicated the presence of 
2,427 polar metabolites features. Of these, 341 polar metabolites were identified using a 
PCDL database generated from the central carbon metabolism metabolite outputs, known 
metabolite literature identified in human observational studies, and the commercial 
METLIN database [32]. 

The PLS-DA analysis of the untargeted acquired data from the nasal wash samples 
(Figure 5) resulted in better model separation (Q2 = 65%) compared to the model created 
using the central carbon metabolism metabolite acquired data (Q2 = 17.5%) It is noted that 
all these samples were fitted within the DCrit threshold of the distance of observation 
(DModX) analysis, indicating them to be non-outliers Cross-validation of this model re-
sulted in a p-value of 0.031. FC analysis identified 12 polar metabolites as statistically sig-
nificant; eight of them downregulated and four upregulated in the post-shedding group. 

(A) (B) 

(C) 

(A) (B) 
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The downregulated metabolites are L-1-pyrroline-3-hydroxy-5-carboxylate, pyroglutamic 
acid, (R)-(+)-2-pyrrolidone-5-carboxylic acid, leukotriene A4, choline, butyric acid, niacin-
amide, and 2-amino-tetradecanoic acid. The upregulated metabolites are allantoic acid, 2-
aminobut-2-enoate, 2-iminobutanoate, and indole acetaldehyde. The untargeted LC-
QToF-MS lipidomic analysis of the nasal samples indicated only three statistically signif-
icant lipids out of a total of 325 identified lipids. The statistically significant lipids includ-
ing PE(20:4/22:6), PE(20:5/22:5), and PE(22:6/20:4) were all downregulated in the post-
shedding group.  

 

 
Figure 5. Partial Least Square-Discriminant Analysis (A) scatter plot, (B) loading plot, and (C) Distance of observation plot of nasal 
wash samples collected from Ferrets. R2X (cum) = 0.535, R2Y (cum) = 0.999, Q2 = 0.650. The ellipse presented in Figure 5A represents 
Hotelling's T2 confidence limit (95%). The colored circles in panel (A) represent each analyzed sample, while the yellow-colored 
stars in panel (B) indicate the average group position for each sample cluster, with the white circles representing the distribution of 
metabolite features between these groups. 

The key compounds identified in the central carbon metabolism LC-QqQ-MS metab-
olomic analysis, untargeted LC-QToF-MS metabolomic analysis, and untargeted LC-
QToF-MS lipidomic analysis were subsequently used for metabolite and lipid enrichment 

Shedding Group 

Post-shedding Group 

(A) (B) 

(C) 
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analysis using MetaboAnalyst 5.0 (Figure 6). Supplementary Figure S2A and S2B pro-
vide the enrichment and pathway impact analysis of the individual metabolite datasets, 
while Supplementary S2C and S2D provide the enrichment analysis and pathway impact 
analysis of the individual lipid dataset. As a means of synthesizing these findings further, 
a curated metabolic pathway of the significant and important metabolites and pathways 
was generated (Figure 7), to which future research efforts using SARS-CoV-2 animal mod-
els can be validated and benchmarked against.  

 
Figure 6. Enrichment analysis of the identified metabolites and lipids of importance from nasal wash samples.  

Pathway analysis between shedding and post-shedding groups of the nasal washes 
collected from infected ferrets showed several perturbed pathways (predominantly amino 
acid-related). Among the key metabolites identified; we found argininosuccinic acid and 
L-1-Pyrroline-3-hydroxy-5-carboxylate involved in the arginine and proline metabolism 
and succinic semialdehyde involved in glutamate metabolism . Arginine and proline me-
tabolism is related to clinical evolution and COVID-19 disease progression, with arginine 
an essential amino acid for nitric oxide homeostasis [33]. Our findings are consistent with 
the observations of Blasco et al. [33] and Shen et al. [19] regarding the enrichment of me-
tabolites involved in arginine metabolism. 

Perturbation in energy metabolisms such as citric acid cycle (TCA cycle), pentose 
phosphate pathway, and urea cycle was also observed. Several metabolites of the citrate 
cycle were slightly elevated (FC ca. 1.10) post shedding but not considered statistically 
significant (p-value >0.10); these included cis-aconitic acid, citric acid, isocitric acid, -ke-
toglutaric acid, succinic acid, adenosine 5-triphosphate, -nicotinamide adenine dinucle-
otide and adenosine 5-diphosphate. Downregulation of the citrate cycle during virus 
shedding could be due to the high energy consumption caused by the virus [21]. For ex-
ample, COVID-19 health care practitioners allow energy expenditure increases of up to 
10% during asymptomatic viral infections [34]. Such a decrease in the citrate cycle metab-
olism would cause an imbalance of the anti-oxidization mechanism and inflammatory 
damage [35]. During the shedding period, the downregulation of citrate correlated with a 
significant increase in glutamate and arginine metabolisms. It is a known phenomenon 
that during infections, the viral systems tend to hijack the host amino acid metabolism, 
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especially the glutamate metabolism [36], leading to glutaminolysis, to increase the path-
ogenesis. Genomic studies on Pasteurella multocida infections indicated that glutamine pro-
moted the expression of parasitic virulence factors in the lungs [37]. Conversely, macro-
phages are also known to prefer glutaminolysis during parasitation [38]. The observations 
here were also found in our previous H1N1 infection study that showed elevated levels 
of glutamate at 1-3 dpi and downstream metabolites such as aspartyl-glutamate and allo-
threonine at about 4-6 dpi [12] in nasal washes collected from ferrets challenged with in-
fluenza. 

Tryptophan degradation was also predominant in the nasal washes during the shed-
ding period. Recently reported studies have shown that during respiratory syncytial virus 
(RSV) infection in BALB/c mice, elevated indole levels and depleted 5-hydroxy indole ac-
etate were observed in the lungs [39,40]. Our study showed that SARS-CoV-2 infection 
caused a slightly altered tryptophan metabolism where the predominant metabolites ele-
vated were indole acetaldehyde and 3-methylindole pyruvate (Supplementary Figure 
S3). However, it should be noted that although both SARS-CoV-2 and RSV target the res-
piratory system, SARS-CoV-2 affects the upper respiratory tract [41] more than the lower 
respiratory system, which is the case with RSV [39]. This difference possibly caused the 
diversion of tryptophan metabolism to indole pyruvate and indole acetate production, 
rather than the production of stress metabolites such as l-kynurenine, 5-hydroxy indole 
acetate, and serotonin. Lin et al [42] studied the effects of viral pneumonia on different 
mouse organs. In their study, the perturbation of tryptophan metabolism was observed 
in serum samples only and not in the respiratory system. In this study, it is most likely 
that these metabolites are captured in the nasal washes via the blood-gas interphase in the 
lungs, indicating a greater potential of nasal washes to being a superior minimally inva-
sive sample type for rapid identification or characterization of such infections.  

Metabolites of the purine and pyrimidine pathways such as xanthine, hypoxanthine, 
and thymine were also identified in the challenged ferrets. These metabolites may be 
linked with purine and pyrimidine release from cell lysis [43]. Purines such as these play 
an important role in regulating the activation and differentiation of immune cells. Envi-
ronmental factors such as hypoxia can modulate the release of purines and pyrimidines, 
in turn, can control the inflammation induced by virus infection [33]. In the current study, 
purine metabolism intermediates such as 2-deoxyadenosine-5-diphosphate were elevated 
in the nasal washes during the shedding period, which correlated to the enriched thiamine 
metabolism pathway downstream (Figure 7). In vitro, culture experiments show that a 
combination of riboflavin (Vitamin B2) and UV light decreases the SARS-CoV-2 titers [44]. 
Similarly, thiamine supplementation in patients has been shown to lower the IL-17 pro-
inflammatory immune storm and simultaneously increase the anti-inflammatory IL-22 
levels [45]. Other impacted pathways that we observed are also common in clinical obser-
vational studies of COVID-19 infected patients. For example, the Warburg effect has been 
identified as having a key role in SARS-CoV-2 replication and associated inflammatory 
response [46]. Others have demonstrated the downregulation of the pentose phosphate 
pathway [47]. While others have reported the role of nicotinate metabolism linked to in-
flammatory signals [33].  
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Figure 7. Curated metabolic pathway of key metabolism changes in a SARS-CoV-2 ferret model during post- shedding. Note, red-colored metabolites are identified features that are 
upregulated during post-shedding relative to viral shedding events; blue-colored metabolites are identified features that are downregulated during post-shedding relative to viral 
shedding events. Key metabolic pathways of interest identified from the pathway enrichment and impact analysis are annotated green. The data for individual pathway metabo-
lites is presented in the Supplementary Figure S3.
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2.5  Specificity of SARS-CoV-2 virus isolates 
The polar metabolites and lipids from the nasal wash samples of ferrets challenged 

with the two SARS-CoV-2 isolates were analyzed to identify isolate-dominated metabo-
lites/lipids and related pathways. This is particularly important when assessing the met-
abolic response of SARS-CoV-2 variants and investigating their pathogenicity. It is noted 
that the clinical presentation of these isolates in humans is considered equivalent (mild-
moderate), with the key point of difference being the virus inoculum dose needed to cause 
an infection in ferrets. The PLS-DA analysis of metabolite and lipid data is illustrated in 
Figure 8. The metabolite data (Q2 = 0.872) analysis showed a better separation than lipid 
data (Q2 = 66%). Cross-validation of these models was found to be statistically significant 
(p-value of 0.0203 and 0.0007 respectively).  

 
Figure 8. Overview of the LC-QToF-MS untargeted metabolite (R2X = 0.367, R2Y = 0.989, and Q2 = 0.872, DCrit value = 1.36181) and 
lipid (R2X = 0.356, R2Y = 0.935, and Q2 = 0.656, DCrit value = 1.34667) data from the two inoculated virus variants analyzed in nasal 
wash samples during viral shedding. (A) PLS-DA Score Scatter plot of metabolite data. (B) PLS-DA Loading Scatter plot of metabo-
lite data. (C) PLS-DA Score Scatter plot of lipid data. (D) PLS-DA Loading Scatter plot of lipid data. The ellipse on the loadings 
scatter plots represents the 95% Hoteling’s threshold. Note, the ellipse presented in Figures 8A and 8C represents Hotelling's T2 confi-
dence limit (95%). Note: The colored circles in panel “A” and “C” represent each analyzed sample, while the yellow-colored stars in panel “B” 
and “D” indicate the average group position for each sample cluster, with the white circles representing the distribution of metabolite/lipid fea-
tures between these groups. 

(A) (B) 

(C) (D) 
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The FC analysis of the metabolites from the central carbon metabolism and untar-
geted metabolites is illustrated in Figure 9. A total of 89 metabolites were found to be 
statistically significant (Supplementary Table S2-S3). Twenty-seven metabolites were 
upregulated, while 62 metabolites were downregulated in nasal washes of ferrets infected 
with the SA01 isolate. Lipidomic analysis indicated a total of 77 significant (p ≤ 0.05) lipids, 
of which 10 were identified (Supplementary Table S4); For the SA01 isolate infected fer-
rets, 5 lipids were significantly elevated and, 5 lipids were significant elevated in the 
VIC01 isolate infected ferrets. 

 

Figure 9. Volcano plots of the significant metabolites from central carbon metabolism (A) and untargeted metabolites (B) using a fold 
change (FC) threshold of ≥ 1.5 or ≤ 0.66 and a p-value of ≤0.05. For a full list of significant metabolites, see Supplementary Information, 
Table S2-S3. The red circles are the significant metabolites that were upregulated in the ferrets infected with the SA01 isolate relative 
to the VIC01 isolate. The green circles are the metabolites that were downregulated in the SAC01 isolate relative to the VIC01 isolate. 

A comparison of the host response to SA01 and VIC01 isolates showed that most of 
the above-mentioned metabolites, which resulted in a higher host response, were consid-
erably elevated in the SA01 isolate challenged ferrets. Especially, the kynurenines, which 
were not statistically significant in the ‘shedding vs post shedding’ groupings described 
above but were found to be significantly upregulated in the SA01 challenged ferret nasal 
washes here. Several other metabolic pathways were significantly (p-value < 0.1) enriched 
in the SA01 isolate (Figure 10) that resulted in the identification of additional enriched 
pathways that involved selenoamino acid metabolism (p-value < 0.1), folate metabolism 
(p-value < 0.1), urea cycle (p-value < 0.1), ketone body metabolism (p-value < 0.1), and 
glucose-alanine cycle (p-value < 0.1). On the other hand, no metabolic pathways were 
found to be significantly enriched in the VIC01 isolate infected ferrets.  

These results indicate that the ferrets infected with the SA01 isolate were more af-
fected, compared to the VIC01 isolate. Following other respiratory viral infection studies 
[39,40], the observations here point to a higher likelihood that, for the ferrets infected with 
the SA01 isolate, both the upper and lower respiratory tracts were perturbed compared to 
the VIC01 isolate. For example, a considerable elevation of nicotinamide adenine dinucle-
otide (NAD) and 10THF indicates a significantly elevated host immune response to the 
SA01 isolate [39,40]. Additionally, the elevated NAD levels (Supplementary Figure S4) 
and upregulated Warburg effect, also indicated towards a likelihood of Acetyl CoA diver-
sion pathway being active in the nasal environment during the infection [48], particularly 
during infection by SA01 variant Furthermore, the phosphatidylethanolamine class of li-
pids (PE), which form part of a cell membrane and provide the cell signaling function to 

(A) (B) 
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the phagocytes during cellular phagocytes [49], are differentially expressed. Recent re-
search suggests that viral pathogens hijack these PE signaling systems to improve their 
replications. Particularly, the study by Barberis et al. [50] indicated that the PE lipids 
showed accumulation in blood samples of the patients infected with SARS-CoV-2. Our 
study here showed that the ferret model also expresses these lipids at elevated levels in 
the nasal washes of the SA01 isolate challenged ferrets. The previous studies have shown 
that during the SARS infection, the SARS-CoV fusion proteins cause host cell membrane 
destabilization by specifically causing the curvature stresses on the PE membranes [51]. 
The SARS-CoV-2 infection causes significant damage in the lungs, triggering an abnormal 
clotting cascade [52]. Therefore, a further, larger study, building on the output of the cur-
rent study herein will be able to validate the critical role of PE lipids and other metabolites 
as a potential biomarker that could enable a rapid differentiation of various SARS-CoV-2 
strains. Furthermore, histologic examination of biopsy tissues during SARS-CoV-2 shed-
ding or autopsy tissues post shedding that characterizes damaged tissues hypothesized 
from the altered biochemistry observed in the metabolomics is needed to assess the bio-
chemical implications of an asymptomatic infection.  

   

 
 
Figure 10. Curated metabolic pathway of key metabolism changes in a SARS-CoV-2 ferret model infected with the SA01 isolate 
during virus shedding. Note, red-colored metabolites are significant features that are upregulated during viral shedding when in-
fected with SA01 isolate. Key metabolic pathways identified from the pathway enrichment and impact analysis are annotated green. 
The data for individual metabolites is presented in the Supplementary Figure S4.         
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While this study is limited in terms of the number of biological replicates, it should 
be noted that the utility of 4 infected asymptomatic ferrets during viral shedding and post 
shedding events does meet the minimum reporting requirements stipulated by the Metab-
olomics Standard Initiative (MSI). The MSI sets the minimum number of biological repli-
cates to three [53]. The authors concede that the use of a limited number of samples has 
the potential to introduce self-association and statistical biases in the data. More so for the 
comparison between the two selected isolates used in this study that further reduce the 
biological replicates per isolate to two ferrets. This limitation is overcome by expanding 
the number of collections per biological replicate in each of the infected ferrets over the 
duration of the shedding and post-shedding events. As such, these data provide a proof-
of-concept application that differentiates ferrets infected by different SARS CoV-2 isolates. 
Moreover, this preliminary study has demonstrated the value of metabolomics applied to 
an asymptomatic SARS-CoV-2 ferret model, and to this end, these data formed the basis 
for a follow up study to be approved that increases the biological replicates significantly 
(n=20). Importantly, the metabolic profiling from an asymptomatic ferret model of SARS-
CoV-2 infection herein clearly indicates the great potential of metabolomics for better un-
derstanding the biochemical change associated with the infection and the value metabo-
lomics provides for informing better clinical diagnosis and facilitating therapeutic devel-
opment via non-invasive sampling approaches.  

More work is currently underway to characterize the asymptomatic SARS-CoV-2 fer-
ret model, as alluded above, utilizing a variety of variants and mutations coupled with 
vaccine and therapeutic therapies available for human use over the duration of a COVID-
19 infection and post recovery. The intent is also to establish a parallel metabolome profile 
of minimally-invasive samples from a symptomatic SARS-CoV-2 model (hamsters). Col-
lectively, these animal models will then guide human clinical studies that lead to the de-
velopment of non-invasive typing technologies of COVID-19 severity, and via an under-
standing of disease progression in the asymptomatic and symptomatic animal models, 
and better understanding of disease progression and recovery for infected patients, and 
border protection from community transmission.     

3. Materials and Methods 
3.1 Animal ethics 

This study was reviewed and approved by the Animal Ethics Committee (AEC) at 
the CSIRO Australian Centre for Disease Preparedness (AEC approval number #1989). 
3.2 Ferret challenge and sample collection 

Six male, outbred ferrets, approximately 4 months of age, were housed in appropri-
ate caging under PC-4 conditions at the CSIRO Australian Centre for Disease Prepared-
ness (formerly Australian Animal Health Laboratory). Animal housing, husbandry, and 
handling for sample collections were as previously described Pallister et al [54]. Before the 
challenge, ferrets were implanted with a LifeChip Bio-Thermo transponder (Destron Fear-
ing); subcutaneous temperature, rectal temperature and body weight were recorded.  

Two ferrets (1 and 2) were challenged with 1x103 TCID50 SARS-CoV-2 VIC01, while 
the other four ferrets were challenged with 5x102 TCID50 SARS-CoV-2 SA01 (ferrets 3 and 
4) and 6x105 TCID50 SARS-CoV-2 SA01 (ferrets 5 and 6). The GenBank accession numbers 
for the VIC01 and SA01 isolates are MT007544 and MT745746, respectively. Supplemen-
tary Table S5 provides a summary of the variations between these two isolates, relative to 
Wuhan-Hu-1 (NC_045512). In infected humans, the two isolates were clinically classified 
‘mild-moderate’ following the World Health Organization minimal common outcome 
measure (after Bauer et al. [55]). Ferrets were challenged via the intranasal route (0.5 ml 
total volume diluted in PBS). The inoculum was back-titrated by TCID50 assay on Vero E6 
cells to confirm the administered dose.  

Following the challenge, animals were assessed at least once per day (twice-daily for 
Days 2–12 post-challenge) for the presence of clinical signs such as reduced-interaction 
score [56], fever (microchip temperature) and respiratory disease. On Days 3, 5, 7, 9, 14 
and 19, ferrets were anesthetized for collection of nasal wash, oral and rectal swab 
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samples, as well as for the measurement of rectal temperature and body weight (data not 
shown). All samples were rapidly frozen, gamma-irradiated (50 kGy), and stored at -80C 
before extraction and analysis. Gamma irradiation was performed to inactivate the SARS-
CoV-2 virus and enable the safe removal of samples from the PC4 containment laboratory 
the ferret challenge experiments were conducted. On Day 25 post-challenge, ferrets were 
humanely killed. qPCR was performed as per Marsh et al. [25].  
3.3 Metabolite and lipid sample extraction  

A general overview of the sample extraction and analytical workflow is presented in 
Figure 11. Briefly, thawed 100 µL aliquot of nasal wash, oral swab in PBS, and rectal swab 
in PBS was added to prefilled tubes containing 450 µL of ice-cold MeOH:EtOH (1:1, v/v) 
Samples were then sonicated in an ice bath for 15 minutes before extraction using the 
Agilent Bravo Metabolomics Workbench (Agilent Technologies). The metabolite and lipid 
extracts were separated via the Captiva EMR-Lipid plate (96-well, 1 mL, 40 mg, Agilent, 
Mulgrave, Australia). A series of blanks and mixed QC standards were prepared in the 
same way, without biological material. Pooled biological quality control (PBQC) samples 
were prepared by combining 10 µL aliquots from each biological sample. The metabolite 
fraction was dried into a 96-well plate and reconstituted in 50 µL Water:MeOH (4:1, v/v). 
Lipids were eluted off the Captiva plate into high recovery glass vials with 500 µL of 
DCM:MeOH (1:2, v/v). The lipid extracts were then dried in a speedvac, before reconsti-
tuting in 50 µL BuOH:MeOH (1:1, v/v). Internal standard set #1 comprised 100 ppb of L-
Phenylalanine (1-13C) and L-Glutamine (amide-15N); Internal standard set #2 comprised 
200 pb of Succinic Acid (1,4-13C2), Glycine (1-13C), L-Aspartic acid (13C4), and L-Valine (1-
13C). The residual relative standard deviation (RDS%) of the internal standards were 6.14% 
(L-Phenylalanine, 1-13C), 3.49% (L-Glutamine, amide-15N), 2.04% (Succinic Acid, 1,4-13C2), 
4.79% (Glycine, 1-13C), 4.41% (L-Aspartic acid, 13C4), and 7.64% (L-Valine, 1-13C).  
3.4 Central carbon metabolism metabolomics (LC-QqQ-MS) 

Central carbon metabolism metabolites were analyzed using an Agilent 6470 liquid 
chromatography triple quadrupole mass spectrometer (LC-QqQ-MS) coupled with an 
Agilent Infinity II ultra-high-performance liquid chromatography (UHPLC) system (Ag-
ilent Technologies, Santa Clara, CA, USA). The instrument was operated using the Agilent 
Metabolomics dMRM Database and Method [57]. Collected data were processed using 
MassHunter Quantitative Analysis (for QQQ) software (Version 10.0, Agilent Technolo-
gies, Santa Clara, CA, USA), normalized to 13C L-Phenylalanine, and 13C Succinic acid (1 
mg mL-1, Cambridge Isotope Laboratories) in preparation for downstream analyses.    
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Figure 11. General overview of the sample extraction and analytical workflow of non-invasive samples collected from SARS-CoV-2 
challenged ferrets.   

3.5 Untargeted polar metabolites (LC–QToF-MS)  
Untargeted polar metabolites were analyzed using an Agilent 6546 liquid chroma-

tography time-of-flight mass spectrometer (LC-QToF) with an Agilent Jet Stream source 
coupled to an Agilent Infinity II UHPLC system (Agilent Technologies, USA). Chromato-
graphic separation was achieved by injection (3 µL) of sample onto an Agilent InfinityLab 
Poroshell 120 HILIC-Z Peek lined column (2.1 mm x 150 mm, 2.7 µm). Each sample was 
analyzed in positive ionization mode. The mobile phase was (A) 10 mM ammonium for-
mate in water with 0.1% formic acid and (B) 10 mM ammonium formate in acetoni-
trile/water (90:10, v/v) with 0.1 % formic acid operated for 20 minutes with a nonlinear 
gradient starting at 98% B. The column temperature was set at 25°C. The detector gas 
temperature was 225°C with a drying gas rate of 6 L min-1. The sheath gas temperature 
and flow were 225°C and 10 L min-1; the nebulizer pressure was also 40 psi. The acquisi-
tion range was 50 to 1600 m/z, at 3 spectra per second. Reference mass ions were 
922.009198 m/z. Auto MSMS data on polled PBQC samples were obtained at collisions of 
10 eV, 20 eV and 40 eV. The PBQC AutoMSMS data was used to generate a curated PCDL 
for further interrogation of acquired samples using accurate mass, MS2 spectra and reten-
tion time. Collected data were processed using MassHunter Profinder software (Version 
10.0, Agilent Technologies, USA), normalized to IS, and putatively identified against the 
Agilent METLIN (MS/MS) Metabolite PCDL (G6825-90008, Agilent Technologies, Santa 
Clara, CA, USA) and a curated in-house PCDL based on MSMS spectra and library thresh-
old score of 0.8. 
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3.6 Untargeted lipidomics (LC–QToF-MS)  
Untargeted lipids were analyzed using an Agilent 6546 liquid chromatography time-

of-flight mass spectrometer (LC-QToF) with an Agilent Jet Stream source coupled to an 
Agilent Infinity II UHPLC system (Agilent Technologies, USA). Chromatographic sepa-
ration was achieved by injection (1 µL) of the sample onto an Agilent InfinityLab Poroshell 
HPH-C18 column (2.0 mm x 150 mm, 2.7 µm). Each sample was analyzed in positive and 
negative ionization mode. The mobile phase was (A) 10 mM ammonium acetate and 10 
µM medronic acid in water/methanol (90:10, v/v) and (B) 10 mM ammonium acetate in 
acetonitrile/methanol/isopropanol (20:20:60, v/v/v) operated for 30 minutes with a nonlin-
ear gradient starting at 55% B. The column temperature was set at 60°C. The detector gas 
temperature was 250°C with a drying gas rate of 11 L min-1. The sheath gas temperature 
and flow were 300°C and 12 L min-1; the nebulizer pressure was also 35 psi. The acquisi-
tion range was 50 to 1600 m/z, at 3 spectra per second. Capillary voltages for the positive 
and negative ionization modes were 3,500 V and 3,000 V, respectively. Reference mass 
ions were 121.060873 m/z and 922.009198 m/z (positive mode), and 119.036320 and 
980.016375 m/z (negative mode). Auto MSMS data on polled PBQC samples were ob-
tained at collisions of 20 eV and 35 eV. Collected data were processed using MassHunter 
Profinder software (Version 10.0, Agilent Technologies, USA), normalized to IS, and pu-
tatively identified against the Agilent METLIN Lipids PCDL (G6825-90008, Agilent Tech-
nologies, Santa Clara, CA, USA) and a curated in-house PCDL based on MSMS spectra 
and library threshold score of 0.8. 
3.7 Statistical analysis and data integration 

The metabolomics and lipidomic data were subjected to further statistical analysis 
using multivariate statistics. The data were first imported, matched by sample identifiers 
(metadata), and log-transformed to normalize the data using SIMCA 16.02 (MKS Data 
Analytics Solutions, Uméa, Sweden). Partial Least Square-Discriminant Analysis (PLS-
DA) was performed by finding successive orthogonal components from the SARS-CoV-2 
isolate and sample type-specific datasets with maximum squared covariance and was sub-
sequently used to identify the common relationships among the multiple datasets. All 
models were cross validated using CV-ANOVA in SIMCA, which is a diagnostic ap-
proach for assessing the reliability of PLS and OPLS models.  

MetaboAnalyst 5.0 (Xia Lab, McGill University, Quebec, Canada) was used for the 
enrichment and metabolic pathway analysis [58] and metabolites with Benjamini–
Hochberg adjusted p-value of ≤ 0.05 and, Fold Changes (FC) of ≤0.67 (downward regula-
tion) or > 1.5 (upward regulation), were considered to be statistically significant [59]. 
Chemical clusters based on structural similarity were created for metabolic examination 
using the ChemRICH analysis [30].  

4. Conclusions 
COVID-19 is a contagious respiratory disease that is causing significant morbidity 

and mortality. Understanding the impact of a SARS-CoV-2 infection on the host metabo-
lism, and how metabolism is altered in response to different SARS-CoV-2 isolates and 
variants, is still in its infancy but of great importance to better understand the short- and 
long-term health impacts of COVID-19. Herein, we investigated the metabolic profile of 
minimally-invasive biological samples collected from SARS-CoV-2 infected ferrets during 
viral shedding and post-shedding periods. The samples consisted of oral swabs, rectal 
swabs and nasal washed. Ferrets (n=6) were challenged with two Australian SARS-CoV-
2 isolates, betaCoV/Australia/VIC01 and betaCoV/Australia/SA01 at different challenge 
doses. Fragments of SARS-CoV-2 RNA were only found in the nasal wash samples in four 
of the six ferrets, and in the samples collected 3 to 9 days post-infection (dpi). Central 
carbon metabolism metabolites were analyzed during viral shedding and post-shedding 
periods using a dynamic MRM (dMRM) database and method. The differentiated central 
carbon metabolism metabolites were then subsequently used to guide untargeted metab-
olomics and lipidomics analysis of the same samples using an LC-QToF-MS methodology.  
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Multivariate analysis of the acquired data identified 29 significant metabolites and 
three lipids that were subjected to pathway enrichment and impact analysis. The presence 
of viral shedding coincided with the challenge dose administered and significant changes 
in the citric acid cycle, purine metabolism, and pentose phosphate pathways, amongst 
others, in the nasal wash samples. Glutamate metabolism and, arginine and proline me-
tabolism were the most significantly perturbed pathways in oral swab samples. Glycoly-
sis, amino sugar metabolism and, gluconeogenesis was significantly altered in rectal swab 
samples. Interestingly, a comparison of the host response to SA01 and VIC01 isolates 
showed that most of the abovementioned metabolites (except thiamine metabolism inter-
mediates) which resulted in a higher host response, were considerably elevated in SA01 
isolate challenged ferrets. These results support other reported metabolomic-based find-
ings found in clinical observational studies and indicate the utility of ferrets as a suitable 
animal model for further COVID-19 research for the early diagnosis of asymptomatic and 
mild clinical COVID-19 infections in addition to assessing the effectiveness of new or re-
purposed drug therapies. Furthermore, the utility of nasal wash samples lends itself to be 
more practical when considering the translation of these findings to other animal models 
and humans where it is not easy (or at times, practical) to get rectal swab samples. This 
study also included an assessment of two locally acquired SARS-CoV-2 isolates that were 
administered at different challenge dosages to simulate an asymptomatic/mild infection.  

Through the utility of an established asymptomatic/mild infection animal model, we 
aim to demonstrate the value of metabolomics for informing better clinical diagnosis and 
facilitating therapeutic development via non-invasive sampling. More work is needed to 
establish a deeper understanding of COVID-19 infections, however, here we demonstrate 
the application of metabolomics applied to an animal model that facilitates the transition 
to a new COVID-normal society, minimizing the impact of asymptomatic and mild clini-
cal infections that have the potential to fuel unchecked community transmission events.  

Supplementary Materials: Supplementary Figure S1: PCA overview of the central carbon metab-
olite data analyzed in the nasal wash, oral swab, and rectal swab samples pre-infection, during viral 
shedding, and post-viral shedding. Supplementary Table S1: Identified significant metabolite clus-
ters during viral shedding and post-shedding using the central carbon metabolism metabolite da-
taset. Supplementary Figure S2: Metabolite and lipid enrichment analysis and pathway impact of 
the identified metabolites and lipids of importance from nasal wash samples. Supplementary Fig-
ure S3: Boxplot representing the data of individual significant metabolites from the key metabolism 
changes in a SARS-CoV-2 ferret model during viral shedding and post-shedding events. Supple-
mentary Table S2: Significant metabolites identified from central carbon metabolism. Supplemen-
tary Table S3: Significant metabolites identified from untargeted metabolomics using LC-QToF-MS. 
Supplementary Table S4: Significant lipids identified from untargeted lipidomics using LC-QToF-
MS. Supplementary Figure S4: Boxplot representing the data of individual significant metabolites 
from the key metabolism changes in a SARS-CoV-2 ferret model infected with the SA01 isolate and 
VIC01 isolate during virus shedding. Supplementary Table S5: Mutations (>20% Frequency) in 
VIC01 and SA01 isolates relative to Wuhan-Hu-1 (NC_045512) 
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