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Abstract 

In light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is 
likely to increase, and new surveillance programs will identify hundreds of novel viruses that might 
someday pose a threat to humans. In the absence of laboratory characterization, scientists may 
increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses 
to identify which animal pathogens could someday pose a threat to global health. We synthesize the 
findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following 
questions: What are the prerequisites, in terms of open data, equity, and interdisciplinary 
collaboration, to the development and application of those tools? What effect could the technology 
have on global health? Who would control that technology, who would have access to it, and who 
would benefit from it? Would it improve pandemic prevention? Could it create new challenges? 
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 Introduction 

 After the COVID-19 pandemic ends - or even before [1] - the world will face another emergence 
of a heretofore-unknown epidemic or pandemic threat, which will most likely be a novel zoonotic 
virus. This is less a testament to the state of global health, and more a basic consequence of 
arithmetic: as many as one in every five known mammalian viruses has the ability to make the jump 
into human populations, and only an estimated one percent of mammal viruses are currently known 
to science [2,3]. For example, a whole constellation of distinct SARS-related coronaviruses circulate 
in bats and in China and Southeast Asia [4,5], and at least two-thirds of reservoirs might still be 
unidentified [6]. But even the most intensively studied viruses and well-sampled hosts can harbor 
undiscovered diversity: influenza A viruses are perhaps the most widely agreed upon future 
pandemic threat [7–9], but novel strains emerging through reassortment in wildlife and livestock 
are often only noticed once they reach or cross the animal-human interface. Despite the urgency of 
research on zoonotic emergence, the diversity and rapid evolution of viruses poses a problem of scale 
for actionable science.  

The next zoonotic threat might be unfamiliar to virologists, but more likely than not, it will bear at 
least some similarity to previous counterparts. A handful of viral clades make the zoonotic jump 
most often, and are more likely to continue spreading within human populations [10–12]. As a 
result, novel zoonotic epidemics often harken back to previous outbreaks: severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) shares 76% of its genome with SARS-CoV, and much of 
its pathology [13]; the emergence of HIV-1 group M in the 1920s was followed by a dozen more 
spillovers of similar primate viruses, including the progenitor of HIV-2 [14–16]; and the emergence 
of filoviruses with Marburg virus in 1967 was followed almost a decade later by the first Sudan 
ebolavirus and Zaire ebolavirus outbreaks, both in 1976 [17].  

Though these instances are anecdotal and few in number, similarities between emergence events 
across time and space point to the widely-accepted idea that while individual outbreaks are 
idiosyncratic and (as standalone stochastic events) unpredictable, they often follow predictable 
patterns, which might constitute the raw materials for a zoonotic risk assessment procedure - 
defining, for example, the virus species, conditions, or locations with a greater risk of causing or 
experiencing these events [18,19]. For example, a 2017 study, which aimed to predict risk factors for 
future coronavirus emergence, used a regression model to show that wildlife markets predicted 
higher coronavirus positivity rates in bats; used another model to estimate hundreds of 
coronaviruses might still be undiscovered; and used a mapping approach to predict most 
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undiscovered sarbecoviruses would be found in southern China and southeast Asia [20]. These 
predictions have been reasonably prescient, given the likely origins of SARS-CoV-2 in the southeast 
Asian peninsula through wildlife farming or trade three years later. Another study used simple 
models of viral sharing networks to predict that ferret badgers might have been a likely bridge host 
in the emergence of SARS-CoV-2 a year before the species was flagged by the World Health 
Organization origins investigation [6]. Though these approaches might not allow scientists to 
predict exactly where and when the next outbreak will begin, they allow a different kind of 
prediction, one focused on exploring and explaining biological possibility and socioecological risk 
factors with an eye towards future threats.  

As zoonotic viruses and their non-human animal (hereafter animal) hosts become better 
characterized, a growing library of virological data is becoming increasingly available and accessible 
to the scientific community, putting this risk assessment procedure within reach for the first time. 
This is increasingly possible with the growing application of machine learning to risk assessment 
problems. Zoonotic origins are often described as a sequential process, in which pathogens must 
pass through a series of biological, ecological, and social filters that would otherwise prevent their 
emergence [21,22]. At each of these steps, machine learning has been successfully and reliably 
applied to predict the animal origins of a novel zoonosis [23,24], the potential hosts of undiscovered 
zoonoses [6,25], the ecological and anthropogenic risk factors for zoonotic spillover [26,27], the 
ability of novel viruses to infect humans [28] and their ability to transmit onwards in human 
populations [10,29]. Such models have also been used to predict the severity of disease [30], and 
may be extended to predict mortality in the future [29,31]. These methods have been particularly 
useful when they can harness the genomic signatures of host adaptation and compatibility [23,32], 
as for many viruses, this may be the only available data [33].  

Here we focus on a subset of this emerging set of methods, which we term zoonotic risk 
technology and define as an informatic system, statistical model, or artificial intelligence that 
identifies at least one of two viral traits we term zoonotic potential (which we define as the ability 
of an animal virus to infect a human host) and epidemic potential (the ability of a zoonotic 
infection to cause disease and transmit onwards in human populations). In calling these tools 
“zoonotic risk technology,” we aim to encompass a wider range of systems than just predictive 
models (e.g., informatic systems like databases that report risk factors for emergence based on expert 
opinion) and that could extend beyond them (e.g., the physical machines that can store these tools 
or would allow their deployment in field settings). More importantly, by considering these tools as 
a kind of emerging technology, we aim not to imply anything about the scientific validity or value 
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of the tools, but instead to focus attention on their user base, implementation, and effects on 
broader human systems. This set of approaches has a necessarily narrowly-defined scope, which does 
not encompass every component of “risk.” For example, machine learning algorithms can also be 
applied to predict zoonotic isolates of bacteria [34,35], and similar models can be applied to identify 
potential wildlife reservoirs or arthropod vectors of zoonoses [25,36,37]. Similarly, spatiotemporal 
patterns of viral dynamics in livestock and wildlife reservoirs are a critical missing piece in many 
spillover risk assessments [38–40]. After a transmissible pathogen reaches human hosts, yet another 
set of virological, social, economic, and political factors determine whether a spillover event becomes 
an epidemic or pandemic [41–44]. However, we focus on the narrowly-defined idea of zoonotic 
risk technology as a way to operationalize a specific set of existing approaches to facilitate the 
identification of viruses with zoonotic potential, and to interrogate the potential value of these 
technologies to global health. 

To facilitate discussion on these topics, we held a one-day digital workshop (the “Verena Forum on 
Zoonotic Risk Technology”) at the Georgetown University Center for Global Health Science and 
Security in January, 2021. This setting allowed scientists to present cutting-edge computational and 
laboratory approaches, and to discuss potential applications or challenges with global health 
practitioners, with a focus on equity concerns in data sharing and technology deployment. Here, 
we report a brief synthesis of our findings.  

Zoonotic risk technologies are no longer hypothetical, and are rapidly emerging as practical, 
concrete applications of scientific knowledge. These tools are only one item in the broader toolkit 
of prediction in viral ecology, and like other predictive models, are imperfect. Here, we identify three 
major barriers to actionable science that researchers must consider further: 

1. Technologies will have the most value to global health if they are treated as part of the 
process of characterizing risk, rather than the singular endpoint. Additional work is required 
to validate predictions, such as laboratory investigations, but may be expensive at-scale and 
potentially politically sensitive. 

2. Academic publishing alone is insufficient to enable the deployment of tools in surveillance 
programs or rapid outbreak response scenarios; user-friendly, open-source tools must be 
coupled with global capacity building in risk analyses and mitigation. 

3. The development and application of zoonotic risk technology, and the sharing of data to 
enable these processes, are likely to engage critical issues such as ownership, equity, and 
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governance; these issues are considered central in global health, but relevant scholarship may 
not currently interface with existing research on zoonotic risk prediction. 

We explore each of these issues in depth here, and discuss possible avenues for interdisciplinary work 
that might help overcome these barriers, identify conditions precedent to their use, and flag 
potential limitations. 

  

How zoonotic risk technology works 

At its core, zoonotic risk technology exploits the assumption that viruses with undetected zoonotic 
potential are more similar to known zoonoses than to non-zoonotic viruses. Early efforts have 
focused on identifying coarse traits that are common among known zoonoses, such as origins in 
particular host clades [11,45,46] or a broad host range [47–49]. These approaches are useful for 
identifying common profiles of what a zoonosis “looks like” - e.g., a vector-borne single-stranded 
RNA virus with a broad host range including primates - that can be generalized across animal 
viruses. One of the only examples of zoonotic risk technology available for public use, the SpillOver 
viral risk ranking platform, uses this approach to rank 887 viruses based on 31 risk factors [50]. 
These approaches benefit from generality and interpretability, but can be limited by data 
availability; for example, host range is rarely characterized in wildlife viruses until they are a known 
threat to human health, and may suffer from biases in study effort or surveillance [51]. Moreover, 
trait-based assessments may be limited by apparent contradictions in simple patterns. For example, 
genome size correlates positively with zoonotic risk [52] but has been reported as having 
contradictory effects on transmissibility [10,12]; replication in the cytoplasm similarly predicts 
zoonotic potential [11,53,54], but also predicts reduced transmissibility [10]. Each of these has an 
idiosyncratic effect on risk assessment, but approaches that gather as many lines of evidence as 
possible can aim to minimize the influence of any given feature to an overall picture of risk.  

Genomic data increasingly offer an alternate avenue for predictive work. Genomes are inherently 
high-dimensional data, encoding meaningful information about microbiology and immunology, 
and are often the first aspect of a novel virus to be characterized, months or years before its ecology. 
A simple model might be trained on the nucleotide similarity of viruses compared to known 
zoonotic threats, while a more advanced one might also include similarity in genomic composition 
biases [23,28]. This approach has worked well for the parallel problem of inferring viral origins using 
genomic features that encode coevolutionary signals of host adaptation. For example, CpG 
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dinucleotide composition can be used to identify vertebrate viruses [55,56], exploiting a viral 
adaptation that matches genomic composition to the vertebrate genome in order to evade innate 
immune responses searching for non-self genetic material [57,58]. These patterns are rare and poorly 
understood today [59], but the subject of significant interest. For zoonotic risk, a model is likely to 
identify some combination of broadly-transferrable coevolutionary adaptations that allow a virus 
to cross species barriers more readily within a broad group (e.g., primates, or vertebrates), and 
random genomic patterns that happen to increase their odds of successful infection of human hosts 
(which they may never have encountered in their evolutionary history). For example, including 
similarity of viral genomes to human housekeeping genes and interferon-stimulated genes appears 
to measurably improve prediction of zoonotic potential [28].  

Over time, genomic approaches are likely to move beyond similarity, and start identifying de novo 
predictors of viral compatibility with human cells. A mechanism-agnostic model may simply 
collapse genomes into hundreds of computational features, identify a small handful of significant 
predictors, and generalize these patterns - but can only do so successfully with sufficient data. For 
example, massive clearinghouses of genomic sequences such as GISAID and the NIAID Influenza 
Research Database have enabled a number of models that accurately classify the zoonotic potential 
of influenza strains down to the protein level [60,61]. Decomposing viral genomes, and identifying 
the regions most relevant to zoonotic emergence, can open new avenues for advanced modeling that 
goes beyond pattern recognition. For example, researchers have developed a number of structural 
simulations to explore binding affinity between the spike protein of SARS-CoV-2 and ACE2 
receptors in animal and human cells [62,63], and structural modeling can be paired with other trait 
data to better predict the capacity for various mammal species to transmit SARS-CoV-2 [64]. 
Similar approaches could be used to identify the zoonotic potential of other viruses for which 
surface protein structure and receptor use has been characterized [65]. These kinds of approaches 
are ultimately limited by the comparability of different structures in both host and pathogen 
genomes, and may be most predictive when comparing hosts or pathogens at lower taxonomic levels 
(i.e. viral strain up to viral genus or family).  

No matter how sophisticated these approaches become, they all face the fundamental task of 
overcoming data limitations [51]. Only a few hundred zoonotic viruses are known—a sample size 
that is fundamentally limiting for inference, even when treated as the positives in a sample of a few 
thousand wildlife viruses. Many groups are chronically understudied, even after zoonotic viruses are 
discovered (e.g., the genus Tibrovirus remains poorly characterized despite the 2009 discovery of 
Bas-Congo virus and the 2015 discoveries of Ekpoma virus 1 and 2), creating bias in training datasets 
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that will usually lead models to underestimate the risk posed by unfamiliar pathogens. Models that 
rely on similarity alone will particularly struggle with these data sources, while those that correctly 
identify underlying mechanisms (e.g., viral matching to host genomic composition) will perform 
better out-of-sample, though distinguishing the two can be challenging. Similarly, the genomes of 
many viruses are only partially characterized; models can train on specific regions of the genome, 
even though targets available from sequencing data may not be those with the greatest biological 
relevance (e.g., a recent model trained on betacoronavirus RdRp sequences could identify zoonotic 
viruses with reasonable accuracy [66]). Genome-based models are also inherently constrained by the 
constant evolution of new viral lineages [19,67]; while influenza sequence data is abundant enough 
to make protein-based models that are somewhat insensitive to this problem [61], other situations 
– such as the emergence of a novel recombinant canine coronavirus (alphacoronavirus 1) that can 
infect humans – are harder to anticipate [68]. Beyond genomic features, ecological data on viruses 
is often even more limited; for example, metadata on host range – a key predictor in many previous 
zoonotic risk studies – is even more underdeveloped, with 20-40% of associations missing in even 
the smallest, best-sampled networks [69]. A recent study showed that graph embeddings of the host-
virus network could improve the performance of a genomic model of viral zoonotic potential—
adding high-dimensional data to a model otherwise limited to a few hundred points—but using an 
imputed host-virus network even further improved predictions by overcoming gaps in viral host 
range data [70]. As these examples highlight, data limitations are likely to change as viruses are 
discovered at an increasing rate. Still, in the interim, experts will continue developing unique 
solutions to facing data sparsity that will advance both the basic biology and the computational tools 
of machine learning. 

It is difficult to define what zoonotic risk technology might look like within the next ten years. As 
models predicting zoonotic potential become more advanced, it may be increasingly possible to also 
address epidemic potential—one recent example was able to identify transmissible human viruses 
with > 80% accuracy [10], while others have nodded towards the possibility that mortality might 
also be predictable [29,31]—and to leverage machine learning more fully for comprehensive risk 
assessment. This nascent field of research is likely to grow exponentially as post-pandemic 
investments transform both the available data describing the global virome, and the institutional 
support for modeling research and development (and associated training in higher education). 
Especially if this work focuses on improvement through validation and cross-talk between 
experimentalists and modellers, we anticipate that the predictive accuracy and reliability of these 
technologies will continue to grow. Previous work, especially from virologists, has been skeptical 
that these approaches might become a reliable source of inference [51,67]; however, prior work 
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anticipating the level of predictive resolution that exists today has also historically been subjected to 
similar skepticism. Moving past these concerns may require a transition from primarily-
computational (sometimes mechanism-agnostic) models—which can perform well at any given 
task, but may be harder to interpret through different disciplinary lenses—and towards a deeper 
conceptual synthesis of virology and computational biology, focused on identifying the rules of life 
that underpin host-virus interactions through a computational lens. As models become powered by 
growing datasets cataloguing the global virome [2,71–75], and more complex microbiological 
predictors that capture more granular host-virus interactions, it is difficult to imagine today how 
accurate and valuable they might become. If their potential for global health manifests, we should 
prepare now to guard against potential misuse, including monopolization in high income countries, 
and to anticipate important matters of equity, including the equitable sharing of the benefits arising 
from their use. 

   

Connecting computational and empirical work 

 Zoonotic risk technology can suggest which viruses may have zoonotic potential, with a nontrivial 
degree of uncertainty, but further confirming that risk requires laboratory characterization. For 
example, successful viral replication in humans requires tens to hundreds of protein-protein 
interactions, which may not be predicted from viral sequence data alone and require laboratory 
characterization [76–78]. Conversely, one of the greatest strengths of these tools is their ability to 
narrow down the list of (potentially millions of) viruses for risk assessment procedures that require 
complicated, sometimes-expensive experiments. For example, experimental evaluation of host 
competency may require establishment of cell lines from new species [79] or non-model organism 
systems in the laboratory with a suite of associated challenges including unique housing 
requirements, low fecundity, a lack of commercial availability, few species-specific laboratory 
reagents, and often scant baseline data upon which to support health evaluations. Focusing on 
establishing these systems for the wildlife viruses with the highest predicted risk could be a way to 
direct effort and minimize costs, particularly if model-to-validation steps are built in that can 
validate the underlying biological reasoning (e.g., predicting cell entry based on receptor sequences 
followed by high-throughput functional testing [80]). Conversely, experimental work will point to 
new needs in model development (e.g., when cell line experiments identify previously-
uncharacterized receptors, these can be incorporated back into the modelling process).  
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This aspect of zoonotic risk assessment can be complicated by concerns that this might require gain-
of-function experiments, which use genetic editing or forced adaptation experiments to induce 
new phenotypes, potentially expanding the host range, pathogenesis, or mode of transmission of a 
pathogen [81]. While these experiments have been critical to previous work — for example, by 
demonstrating the epidemic potential of highly pathogenic avian influenza through directed 
mutagenesis and serial passage to recover a virus capable of airborne transmission [82,83], or by 
demonstrating the potential of SARS-like viruses to jump from bat reservoirs into human 
populations [84] — they also face tremendous scrutiny given perceived or potential biosafety and 
biosecurity risks, including those potentially arising from dual-use research of concern [85]. 
Importantly, most host-virus interaction research (including in vitro and in vivo experimental 
infections) are not actually “gain-of-function” experiments, but are mislabeled or misidentified as 
such by the public or media. These concerns are likely to face even greater scrutiny given public 
conversations about SARS-CoV-2’s as-yet-unknown origins and the emergence of unsubstantiated 
origin theories centered around biosecurity lapses [86]. 

There are a tremendous diversity of experimental approaches stopping short of gain-of-function 
experiments that may be used to validate predictive models and offer a more operationalized view 
of the problem. Among these are experimental infections to test the ability for cell entry and 
receptor usage, replication, pathogenesis, evasion of host immune responses, assembly and egress, 
and onward transmission [80,87]. The complexity of these experimental systems may begin with 
host cell lines and surrogate viruses, pseudoviruses, or replicon systems, and expand to include 
experiments with live virus and organoids [88] or live animal models [89]. Each of these laboratory 
approaches can offer targeted methods to validate predictions from machine learning models, such 
as virus-human compatibility, ability for viral replication and productive infection, and disease 
pathology, tissue tropism, or courses of infection. Many of these methods can be used without the 
requirement for high-containment laboratories, which is particularly important to ensure that a 
wide variety of different viral groups can be studied safely yet at scale and across country contexts. 

Experimental work can further help identify the (model-able) molecular barriers to zoonotic 
emergence, including rules governing attachment and entry, transcription and genome replication, 
viral protein expression, innate immune antagonism, viral assembly, and egress. Each stage in the 
viral life cycle represents an opportunity to improve model performance, but will require the 
gathering and reconciliation of data across multiple host-virus systems and experimental 
approaches. For example, laboratory experiments are likely to vastly improve model performance 
upstream by offering new kinds of predictor data that reflect the various types of host responses to 
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infection. These may include broad comparative data on host transcriptomic or proteomic 
responses to infection [90], or host-virus protein-protein interactions [77], which may help identify 
the mechanisms of infection and pathogenesis in humans even when collected from animal model 
systems [90]. Through better collaboration among statistical modellers and empiricists, future 
development of zoonotic risk technologies can iteratively validate or falsify model predictions, 
helping to improve the accuracy and applicability of predictive models over time. While some 
modeling publications may therefore recommend further characterization of specific viruses, this 
will be unlikely to occur without active partnership between modellers and experimentalists, given 
that the priority is often placed on known and recurrent threats. 

  

Theory to technology, technology to toolkit 

Most zoonotic risk technology is developed with the stated intent to contribute positively to human 
health and reduce the future burden of emerging zoonotic viruses. However, the knowledge that a 
virus poses a threat to human health often exists for years, even decades, before a catastrophic 
outbreak [33]. Zoonotic risk technology may therefore have limited benefit to global health without 
careful, intentional work focused on application and actionability. The pipeline from technology 
development, to implementation, to risk mitigation is likely to only succeed at first in specific, 
narrow use cases.  

First, and most foundationally, predictive modeling work will always be disconnected from global 
health if the endpoint is in the academic literature. This is particularly the case if research groups are 
separated geographically and practically from the direct impacts of potential spillover events, and 
choose not to pursue collaboration and knowledge exchange with local experts, limiting both the 
expertise available to properly design and contextualize work, and the channels available for possible 
dissemination and outreach. Similar challenges have been identified for related modeling problems, 
like the development and deployment of early warning systems or real-time epidemic forecasting 
[91,92]. Engaging practitioners, policymakers, and stakeholders in the participatory design, release, 
and ongoing improvement of infrastructure is likely to increase the value of zoonotic risk 
technology, as will designing open tools with public interfaces (open-source software or websites, 
e.g. FluLeap: https://fluleap.bic.nus.edu.sg/) and based on open, interpretable data. These tools 
should be adaptable in order to more accurately reflect scientific advances, as well as changing user 
needs, over time. They must report appropriate, interpretable, and locally-relevant metrics of risk to 
inform decision-making, with uncertainty presented as transparently as possible, including where 
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uncertainty comes from (e.g., data limitations vs. model calibration) and how uncertainty correlates 
with the outcome variables. Scientists may also be called on to develop new language for conveying 
context-dependent risk and communicating uncertainty to different audiences, including properly 
disclaiming results such that public, private, or health sector responses neither over-react to high-
risk predictions nor under-react to low-risk predictions. This enduring challenge extends into many 
other aspects of global health and disease ecology.  

At least in the near term, it is unlikely that any specific, coordinated, and effective response will be 
mobilized based solely on the identification of a novel virus with zoonotic potential. Resource 
scarcity prevents the development of individual surveillance systems or biomedical research-and-
development programs for each of the thousands of wildlife viruses with zoonotic potential; existing 
programs focused on the narrowest set of expert-assessed high-risk threats (e.g., influenza A viruses, 
betacoronaviruses, or henipaviruses) are already over-encumbered. These programs may, however, 
benefit from technology that identifies zoonosis-relevant evolutionary shifts in viruses circulating 
in wildlife (e.g., the emergence of a Nipah virus lineage with greater estimated transmissibility, a 
long-standing concern in some biosecurity circles [93]).  

More broadly, these tools may find applications in existing One Health surveillance programs 
focused on high-risk interfaces between wildlife, domestic and captive animals, and humans. 
Zoonotic risk technology is likely to be most actionable at small scales: a local inventory of wildlife 
viruses can be ranked according to risk, frequency, and degree of human-animal contact, with the 
highest-risk viruses incorporated back into local surveillance priorities. For studies reporting the 
discovery of novel animal viruses, this step can be simple as an additional analysis, with at least one 
published example of this use case [94]. However, if studies are designed with these kinds of 
assessments in mind, they may also be able to collect additional data with tremendous value. For 
example, sequence-based viral discovery often focuses only on viral reads and discards data from the 
host [95]. The host-derived sequence data contains crucial information about the host response that 
could provide insight into a given virus’ pathogenic potential in an animal or human host, allowing 
for further surveillance prioritization of both host and virus species. The utility of these studies is 
also limited by the quality of data shared in the public domain: sharing of standardised and validated 
data such as host species identification, location, specimen type, and date of collection in a 
centralised resource, rather than lost in a publication (if at all), is one of the first steps to a truly 
collaborative approach.  
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Once high-risk viruses are identified and reported in wildlife monitoring studies, these pathogens 
may also be identified and flagged earlier in samples collected by programs that passively monitor 
the health of high-risk human populations (e.g., livestock keepers or wildlife traders) and sentinel 
hosts like livestock, or actively screen human populations for novel pathogens by investigating 
undiagnosed febrile illnesses [96–99]. Behavioral change or occupational safety interventions may 
then be targeted to reduce spillover risk for high-risk human populations, though they may be most 
feasible or successful if they target risky exposure to specific host species with multiple high-risk 
viruses and frequent human contact (especially if they already match local priorities), thereby 
protecting against their entire zoonotic virome. For example, while Nipah virus is the highest-
priority zoonotic threat hosted by the Indian fruit bat (Pteropus medius), interventions that reduce 
Nipah exposure in humans may also protect against the other 50+ viruses that these bats host [100]. 
Similarly, the reservoir for Lassa virus carries a number of other bacterial zoonoses, and rodent 
control can reduce transmission risk across this range of threats [101]. While many of these 
reservoirs are known today from their role in pathogen spillover, a number of other high-risk species 
are presumably unknown; building on previous work that characterizes zoonotic risk using 
ecological traits correlated with “hyperreservoirs” [25], fruitful avenues of future research include 
characterizing these species’ viromes, and estimate the risk that they pose in aggregate. 

  

Failure to equitably share benefits may limit impact  

As the failure to ensure global access to diagnostics, therapeutics, and vaccines during the COVID-
19 pandemic has demonstrated [102], the distribution of the benefits from health technologies, 
particularly novel technologies, is inequitable and a global injustice. Global health must not simply 
aspire to principles of health equity and social justice, but must also make equitable access to life-
saving technologies a condition precedent to their development and use. This must be a priority in 
the development and use of zoonotic risk technology, which may also pose a unique set of problems 
for both researchers and practitioners. These technologies depend on open data sharing, both to 
create sufficient training sets for artificial intelligence, and to actually apply them for risk assessment 
and subsequent mitigation. Community efforts to share human and animal sequence data at 
sufficient scales (i.e., to generate feature sets for advanced machine learning) exist for just a handful 
of high profile viruses, nearly exclusively as part of international coordination on pandemic 
preparedness and response (e.g. influenza A and SARS-CoV-2 data sharing via the GISAID 
platform), while all-purpose repositories like GenBank still only capture a fraction of known viruses 
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(as many are bottlenecked by taxonomic ratification), and lack essential metadata needed for 
prediction. Both face challenges with regard to contributors receiving credit and attribution for 
research (especially modeling studies) based on the data they submit (Box 1).  

These problems become more complex with regards to the deployment of zoonotic risk technology 
itself. Initially, there may be resistance to using these tools: scientists who gather novel sequence data 
may rightfully be hesitant to upload unpublished data to online web tools for zoonotic risk 
prediction without clear and enforceable protections against data reuse by the curators of such tools, 
even if these tools are curated by a trusted third-party (though access to this technology may 
inherently change power dynamics). This is only one concern out of a broader set of issues around 
access and benefit sharing for viral surveillance. Based in countries’ sovereign rights to determine 
the use of resources within their territory, access and benefit-sharing regimes seek to redress and 
prevent injustices arising from the exploitation of genetic resources, and from the inequitable 
sharing of the benefits that arise from their use. Some protections and norms around the sharing of 
physical pathogen samples and the benefits arising from their use are reflected under the Nagoya 
Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising 
from their Utilization (Nagoya Protocol) to the Convention on Biological Diversity. Under the 
Nagoya Protocol, countries may implement domestic legislation that requires foreign researchers 
seeking access to pathogen samples, or in some cases even data related to those samples, to obtain 
the country’s prior informed consent and the conclusion of mutually agreed terms that include 
benefit sharing, such as attribution in publications, capacity building, technology transfer, or 
intellectual property rights. Depending on the terms agreed, the use of genetic sequence data derived 
from pathogen samples may be restricted, including both preventing the sharing of sequence data 
in open access databases, requiring open sharing, or the sharing of any diagnostic tools developed 
utilizing the sequence data.  

Given that a growing number of labs are readily able to synthesize viruses from their genome 
sequences (e.g., horsepox [103] and SARS-CoV-2 [104]), there are concerns that the bargain 
underpinning access and benefit sharing regimes provided by physical samples - like those 
established in the Nagoya Protocol - may be in flux. If zoonotic risk technologies allow researchers 
to identify high-risk viruses with reasonable certainty before laboratory characterization, this could 
add an additional layer of complexity. Sequence sharing and synthesis of SARS-CoV-2, in addition 
to the global failure to equitably distribute associated vaccines, diagnostics, and therapeutics, may 
motivate attempts to expressly address these gaps in international legal instruments. These could 
include, for example, potential revision to the International Health Regulations (2005) or the 
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Nagoya Protocol, or new international law, such as a Pandemic Treaty. Any international 
governance reform should actively consider the importance, on equal footing, of open data sharing 
and the equitable sharing of the benefits of novel technologies like zoonotic risk technology.  

Even if zoonotic risk technologies are easily applied without challenges around sequence data 
sharing, there may be gaps between intentions and actionable science. When high-risk viruses are 
identified, findings may be kept private until they are published much later in peer-reviewed 
journals, both to protect credit for scientific discoveries, and to accommodate governments’ 
hesitancy to release information that could create fear or stigmatization. This could reinforce the 
disconnect between viral sampling and actionable science for global public health. At present, 
announcements about the discovery of notable animal viruses are often made ad hoc either by press 
release or conventional publishing methods. If zoonotic risk technology becomes a widely-adopted 
part of surveillance, new governance processes will likely need to be developed that protect 
researchers’ careers and credit, but also ensure that announcements are transparent and verifiable, 
particularly if alarming or unusual results (e.g., the hypothetical discovery of a filovirus with 
zoonotic potential in bats in the United States) are likely to motivate public or international 
concern.  

Another set of issues could arise around who benefits from zoonotic risk technology. It seems 
plausible that these technologies might mostly benefit from the research effort and data sharing 
occurring in tropical countries, where zoonotic viral diversity is believed to be highest [11]. 
However, their development might mostly further the careers of researchers in high income 
countries in North America and Europe, particularly if developed by experts who are unattuned to 
power dynamics in global health. Equally concerning, we identify a possibility that these tools will 
largely be developed as proprietary “risk assessment algorithms” by corporate “data science for 
impact” programs, for-profit global health firms, and non-profit organizations, just as they have 
been for the development of pandemic insurance programs or similar analytics. In these 
circumstances, and without appropriate governance, the countries with the highest burden of 
zoonotic emergence might find their own data (repackaged in an analytic format) sold back to them 
at a premium by scientists and corporations from high-income countries. Open sharing of academic 
research could help scientists undermine this trend and provide tools directly to end users in public 
health, or assist them in developing their own tools, but may simply accelerate advances in zoonotic 
risk technology without changing the existing colonial framework of global health. Involving 
researchers from low- and middle-income countries – and supporting their leadership in this field 
(particularly, to a greater extent, in future workshops on this topic, which could advance this issue 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2021                   doi:10.20944/preprints202104.0200.v1

https://paperpile.com/c/ncg34d/L5JB
https://paperpile.com/c/ncg34d/L5JB
https://doi.org/10.20944/preprints202104.0200.v1


further than the present workshop did) – will help limit these shortfalls. This can be particularly 
facilitated by using virtual workshops (with attention to different accessibility challenges) and by 
supporting in-person workshops around the world, and by coordinating participation proactively 
through existing zoonotic disease and laboratory networks (e.g., SEAOHUN, OHCEA, or the 
CREID center network). Involving researchers from the discipline of science and technology 
studies (STS) may also lead to more honest and critical appraisal of the ethical issues surrounding 
the emerging technology, and who it benefits or harms.  

Finally, we anticipate that zoonotic risk technology may replicate existing, and potentially create 
new, ethics and governance problems in synthetic biology. Just as convolutional neural networks 
and other kinds of artificial intelligence can be used to fabricate realistic images entirely through 
predictive algorithms (e.g., thispersondoesnotexist.com), zoonotic risk technology might be used to 
generate novel viral sequences (and potentially synthetic viruses) with high predicted zoonotic and 
epidemic potential. Already, researchers have used these approaches to simulate alternate 
coronavirus spike protein sequences that might be able to infect human cells [105]. These 
approaches might support biomedical work; for example, synthetic spike proteins could be used to 
test a candidate universal betacoronavirus vaccine for its value across “unsampled evolutionary 
space.” However, if biomedical companies attempt to patent these sequences, they could create new 
problems for future sample sharing, therapeutic and vaccine development, or outbreak response if 
viruses with the relevant sequence someday emerge - potentially at the expense of some countries 
more than others. While similar issues have been raised before during zoonotic outbreaks [106], the 
novelty of simulated zoonoses might create new complications for intellectual property law. 
Moreover, viral ranking algorithms or artificially simulated virus sequences might also be used by a 
malicious actor, highlighting the need to involve scholarship from the “dual use” field of bioethics. 

  

Prediction isn’t prevention  

Zoonotic risk technology may become an asset in the emerging disease toolkit, but overselling this 
technology or understating uncertainty will lead to preventable divergences between expectations 
and scientific possibility. Models may ultimately have profound clinical and field applications, but 
the uncertainty around risk estimates and likelihood of inaccurate predictions must be carefully 
communicated. As part of that, epistemic differences in disciplinary conceptions of uncertainty may 
need to be bridged: for example, a model may make “errors” simply because reality is a stochastic 
observation of underlying risk landscapes, and a technology that correctly infers probabilities or risk 
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landscapes will still never perfectly represent reality. (These may play into other disciplinary tensions 
about what “prediction” means: to public health experts and the public, prediction is often 
synonymous with anticipating future events, but to computational biologists, it may more often be 
used to describe accurate inference about biological possibility.) Further, there is no substitute for 
experimental work, and bench virology will play a critical role to generate the necessary data for 
model development and validation. Zoonotic risk technology is also no substitute for general public 
health preparedness; even though these tools could be used in the future to estimate the risk posed 
by newly-discovered viruses as soon as the first genome becomes available, many viruses are still 
likely to continue to enter human populations before they have been characterized in animals. 
Whether these outbreaks become epidemics or pandemics is a problem outside the scope of the 
technologies we discuss.  

Therefore, we warn that investments in research and development on topics like machine learning 
or animal virus genomics must not come at the expense of other essential kinds of modeling work 
(e.g., work focused on virus transmission and spread, or identifying the most consequential 
surveillance gaps), or more importantly, at the expense of non-technological investments in health 
systems strengthening, including attainment of universal health coverage, and similar aspects of 
pandemic preparedness. Similarly, it is possible that interest in pre-emergence zoonotic viruses 
might conflict with, redirect, or undermine local priorities like water and food-borne diseases (and 
sanitation), agricultural, high-burden communicable diseases (e.g., HIV-AIDS, tuberculosis, and 
malaria) or non-communicable diseases; interventions may even disrupt local interests and norms, 
potentially weakening outbreak response during emergencies. If the post-pandemic period becomes 
dominated by this narrow subset of research priorities, researchers will need to be individually 
careful in order to accurately and fairly present the value and importance of their work (an 
imperative that will be encouraged by efforts to reduce funding scarcity in this space).  

At the same time, it is indisputable that zoonotic risk technology is currently limited in both 
development and application by data scarcity, and that the only solution to this is continued or 
greater investment in data collection—particularly in basic science. Post-pandemic investment in 
coordinated programs for viral discovery, One Health surveillance, bench virology, and other kinds 
of laboratory capacity are all likely to generate vital data that can improve the performance of these 
technologies, and remedy critical gaps in our current understanding of the global virome. These will 
be most effective if investments are maximized in the hotspots of zoonotic emergence, if modellers 
are engaged in the process to support data collection and processing in reusable formats, and - 
perhaps most importantly - if these investments are made with the aim of improving outbreak 
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prevention and preparedness entirely independent of the success or failure of zoonotic risk 
prediction as a scientific outcome.  

Finally, we suggest that ongoing work is required to benchmark the accuracy and value of these 
technologies, that transparency and uncertainty be key facets of their presentation, and most 
importantly that the scientific community remains prepared for “surprises.” (In a strikingly timely 
example, only days before the submission of this manuscript, the first ever report of human 
infections with H5N8 avian influenza A virus was released—a strain that was, surprisingly enough, 
able to be correctly identified as human by a previously-published model that had never 
encountered a zoonotic H5N8 virus in the training data [107].) Models are only as powerful as the 
data that inform them, and with such a small percentage of the global virome described to date - and 
new viruses evolving constantly - it seems likely that the next generation of risk prediction systems, 
and public health infrastructure that may come to rely on them, will face a number of entirely 
unexpected threats. 
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Box 1. Crediting researchers for reused, open sequence data 
 

When “big data” becomes available at scales that allow machine learning (or other intensive 
secondary analysis), the researchers who compiled the data often receive exponentially-diminishing 
credit through academic incentives. Existing public data repositories, including GISAID and NCBI 
GenBank, have no indexable source attribution for sequence data. GISAID requires 
acknowledgement of the source, but such acknowledgement is not a trackable metric contributing 
to career development; similarly, GenBank accession numbers assist in reproducibility of analyses, 
but are not indexed, and cannot be easily tracked by contributors as a career metric. This can 
disincentivize open data sharing if it is seen as a “non-promotable” task for those generating the data, 
given that other indexed metrics like citations may be used to determine scientific impact when 
evaluating funding proposals or in hiring and promotion decisions. 
 
Moreover, this system currently benefits users of public data repositories more than those who 
generate the data. In several instances during the COVID-19 pandemic, laboratories generating 
SARS-CoV-2 sequence data have been stretched thin with pandemic response and were unable to 
annotate, analyze, and publish on their data before computational or academic laboratories used the 
data in their own publications. Similar practices are particularly divisive when researchers use data 
generated by public health laboratories in developing nations without co-authorship, collaboration, 
or indexed citation of the source.  
 
One potential solution would be an indexed DOI for sequence data; similar approaches are used for 
aggregate data in biodiversity research (e.g., by the Global Biodiversity Informatics Facility; 
gbif.org), and while many studies fail to follow recommendations for proper attribution, these 
procedures are a reasonable first step for fair credit.  
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