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Abstract

The effect of thermal radiation on the two — dimensional, steady-state, conjugate heat transfer from
a circular cylinder with an internal heat source in steady laminar crossflow is investigated in this
work. Po (Rosseland) and P: approximations were used to model the radiative transfer. The
mathematical model equations were solved numerically. Qualitatively, Po and P1 approximations
show the same effect of thermal radiation on conjugate heat transfer; the increase in the radiation
— conduction parameter decreases the cylinder surface temperature and increases the heat transfer
rate. Quantitatively, there are significant differences between the results provided by the two

approximations.

Keywords: conjugate heat transfer; convection-radiation; Rosseland approximation; Pi

approximation; finite difference; defect correction - multigrid.
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NOMENCLATURE

radius of the cylinder, m
dimensionless group, 8=3 f a
heat capacity, J / (kg K)

diameter of the cylinder,d =2 a, m

&
2(2-¢)

dimensionless group, € =

dimensionless directed — integrated intensity of the radiation, G = &

dimensional directed — integrated intensity of the radiation, W / m?
absorption coefficient, m*

dimensionless group, KX=ka a

index of refraction, dimensionless

average Nusselt number, dimensionless

local Nusselt number, dimensionless

Prandtl number, Pr = s« / pr o, dimensionless

dimensionless radiative heat flux vector

cylinder Reynolds number, Re = U, d pf / 1#, dimensionless
Rosseland radiation - conduction parameter, dimensionless

radiation - conduction parameter for P1 approximation, dimensionless
dimensionless radial coordinate, r” / a, in cylindrical coordinate system
radial coordinate in cylindrical coordinate system, m

dimensionless radius of the wire

4n2 o Ty
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T temperature, K
U,  velocity far away from the cylinder, m/s
VR dimensionless radial velocity component

Vo dimensionless tangential velocity component

. . . . T re)—Too
VA dimensionless temperature defined by the relation, Zs () = ;( )T
0~ loo

Greek symbols

a thermal diffusivity, m?/s
S extinction coefficient (total attenuation factor), m?
Sr Rosseland mean extinction coefficient, m*

€ emissivity coefficient, dimensionless

. T . .
4 temperature ratio, { = T—°° dimensionless
0

& thermal conductivity ratio, Ac / /¢, dimensionless
A thermal conductivity, W / (m K)

y7, dynamic viscosity, kg / (m s)

0 polar angle in cylindrical coordinate system, rad
p density, kg / m®

c Stefan — Boltzman constant, ¢ = 5.670 x 108 W (m? K%)
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Subscripts

c refers to the physical property of the cylinder

f refers to physical property of the fluid

inf refers to a large finite distance from the center of the cylinder
S refers to the surface of the cylinder

0 refers to the wire inserted into the cylinder
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1. Introduction

All materials with the temperature in the range of 30 to 30,000 K emit and absorb thermal
radiation. The emission of thermal radiation is due to the conversion of the internal energy into
energy transported by electromagnetic waves or photons. For heat transfer applications

wavelengths between 10" m and 10 m are important.

The radiative transfer equation (RTE) is an integro—differential equation very difficult to
solve. Exact analytical solutions exist only for simple situations such as one — dimensional plane
parallel media without scattering. Therefore, approximate mathematically less complicated but
accurate models for the RTE have been developed. Examples are zeroth order diffusion or
Rosseland approximation [1], high order diffusion approximations like Pn [2] and SPn [3], and the
moments method [4], [5] (and the references quoted herein). The numerical methods proven to be
effective for solving RTE are the zonal method [1], the discrete ordinates method [6] (and the
references quoted herein), the finite volume method [6] (and the references quoted herein) and the
finite element method [7, 8]. The Monte Carlo [9] and the lattice Boltzmann [10] methods were
also used to solve RTE. An extensive presentation of these approximate models is outside the aims

of the present work. Reviews can be viewed in [1] and [11].

The RTE solving necessitates the knowledge of the temperature profiles. In almost all the
articles that investigate the RTE solving, the energy balance equation considered is the one phase,
transient heat conduction equation. The influence of thermal radiation on more complex heat
transfer problems was investigated by (the citation is restricted to the cases of forced / mixed
convection — radiation heat transfer in external flows) Hossain and Takhar [12], Andrienko et al.
[13], Zhang et al. [14], Surzhikov [15], Sheikholeslami and Shehzad [16], Waqas et al. [17], Imtiaz
et al. [18], Irfan et al. [19], Roy and Gorla [20]. The boundary layer formalism and Rosseland
approximation were used in [12], [14], [17 — 20]. Sheikholeslami and Shehzad [16] solved
numerically the 2D mass, momentum and energy balance equations using the Rosseland
approximation to model the radiative heat transfer. Complex models for mass, momentum, energy
and chemical species conservation equations coupled with RTE were solved numerically by

Andrienko et al. [13] and Surzhikov [15] in 2D axisymmetric and 3D geometries.
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The effect of thermal radiation on conjugate, forced convection heat transfer was analysed
only for an internal flow problem by Nia and Nassab [21, 22]. The aim of the present work is to
investigate the effect of thermal radiation on the conjugate, forced convection heat transfer for the
external flow case. To the best of our knowledge, this problem is reported for the first time here.
The test problem models the steady — state conjugate heat transfer from a circular cylinder with an
internal heat source in steady laminar crossflow. The Po (Rosseland) and P1 approximations were

used to model the radiative transfer.

This paper is organized as follows. In Sect. 2 we describe the mathematical model of the
problem. Section 3 presents the numerical algorithm. The numerical experiments made and the
results obtained are presented in Sect. 4. Finally, some concluding remarks are briefly mentioned
in Sect. 5.

2. Mathematical model

Let us consider an infinitely long horizontal circular cylinder placed in a vertical, laminar,
steady flow of an incompressible Newtonian fluid (see figure 1). The diameter of the cylinder d is
assumed considerably higher than the mean free path of the surrounding fluid. Inside the cylinder
there is a wire of dimensionless radius ro and constant temperature To. The free stream velocity
and temperature of the fluid are U., and T, respectively (To > T.). The physical properties of the
cylinder and surrounding fluid are constant and isotropic. The effects of buoyancy, viscous
dissipation and work done by pressure forces are considered negligible. The fluid is assumed to be

a gray, emitting, absorbing and isotropic scattering medium.

For the assumptions discussed previously, the dimensionless energy balance equations (the
radius of the cylinder a is considered the length scale and the free stream velocity U the velocity

scale), expressed in dimensionless cylindrical coordinate system (r, 6), are:

- Inside the cylinder;

(r<ro),

Z.=1.0; (1a)

d0i:10.20944/preprints202104.0249.v1
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(ro<r<1),
10 0 Z 1 02z,
T (r )t EGE=0 (1b)
- Inthe surrounding fluid,;
Re Pr 9%r, Ve 97y _ 10 (9% 19 (9% _
2 (VR ar T 69)_r6r(r ar rq”)-l_rz ae(ae Qre) (2)

where grr and g, are the dimensionless normal and tangential components of the radiative heat

flux vector.
The boundary conditions to be satisfied by the dimensionless temperature are:

- Symmetry axis (=0, );

75 =058 = )
- Interface (r = 1);
- Free stream (r — 0);

Z;=0.0 (3¢)

Rosseland approximation

The radial and tangential components of the dimensionless radiative heat flux vector given by

Rosseland approximation [1] read as:

3 aZf

Grr= —2Rdy[C+ 2, (1= )] 2L, g9 = 2 Rdo [T+ 2, (1- )P 22

(4)

where Rdo is the Rosseland radiation — conduction parameter, Rdy = 4 o T§/ ( As ﬁR) and ¢ =

T Note that
To

T
("‘Zf(l—():T—O
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3
If we denote, for the simplicity of writing, f =§ Rdy [ ¢+ Z; (1— ¢) ], equation (2) can be
rewritten as

aZf

Re Pr aZf 14 aZf aZf
2 (VR?-FTQW) rar[ (1+f) ]+r260[( +f) )
P1 approximation
For Py approximation, the dimensionless radiative heat flux vector satisfies the equation, [1],
1 dqy Rd
r(ra) Gt =t P[0+ 2 (1= O] -6} ®)

where G is the dimensionless directed — integrated intensity of the radiation, X = k, a, Rd, =

4 n?T§ /( k4 As). Substituting equation (6) into equation (2), it results:

Re Pr 0Zy Vg dZy\ _ 1 8 0Zf 1 0%z Rd
T (st ) =t 2 (r )+ S5t - 2 o+ 2, (1- O] -
(7)

Note that some elementary algebraic manipulations were made in order to obtain for Rd: an
expression similar to that for Rdo. The dimensionless directed — integrated intensity of radiation G

verifies the equation [1]:
L (r s Ll sx{e-[c+z,(1- O]} =0 @
where 8 = 3§ a.

The boundary conditions to be satisfied by G are, [1]:

- Symmetry axis (6 = 0, 7);

B
I
(e}

(92)

Q
>

- Interface (r = 1);

— 2 me{c-[c+z,(1- O]'}=0 (9b)
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- Free stream (r — 0);

4 86=0 (90)

or
G=¢" (9d)
where € = £ Two boundary conditions were proposed and tested for G at free stream. The

2(2-¢)
boundary condition (9c) considers the free stream as an inflow / outflow boundary with null
intensity of radiation. The boundary condition (9d) assumes radiative equilibrium at free stream.

It must be mentioned that for the P1 approximation, the dimensionless radiative heat flux is given
by [1],

qQr=-1/BgradG. (10)

The physical quantities of interest are the cylinder surface dimensionless average
temperature Z.g, the local Nusselt number, Nu (), and the average Nusselt number, Nu.
Considering as driving force the difference (To - Tw), the local Nusselt number based on the
diameter of the cylinder is given by (for @ > 1):

d Zc

Nu(6)= —2d o (11)
The average Nu number is given by the relation:
Nu==["Nu(6)d6 (12)
T Y0

The cylinder surface dimensionless average temperature Z ;, was computed with the relations:

Zes= = [y Zcly=1d 0 (13)
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3. Method of solution

The energy balance equations (1, 2) belong to the class called interface problem, [23]. The
spatial derivatives (equations (1b, 2) were rewritten as a single equation with discontinuous
coefficients) were discretized with the upwind and centered finite difference schemes (a double
discretization required by the defect — correction iteration) on a vertex-centered grid, [23]. The
spatial derivatives of the radiative transfer equation (8) were approximated by the centered finite
difference scheme. Numerical experiments were made on meshes with the discretization steps, Af
=x/ 128, Ar=1/128, A0 =m /256, Ar=1/256, A0 =7 /512, Ar=1/512 and A0 = =/ 1024,
Ar =1/1024. The external boundary conditions (3c) and (9c, d) are assumed to be valid at a large
but finite distance, rinr, from the center of the cylinder. The algorithm used to solve the discrete
equations is the nested multigrid defect-correction iteration presented by Juncu and Mihail [24].

The defect — correction iteration was applied only to the discrete approximation of the
energy balance equation. Two multigrid cycles were used inside the defect — correction iteration
step. The structure of the multigrid cycle is: 1) cycle of type V; 2) smoothing by alternating line
Gauss Seidel method; 3) two smoothing steps are performed before the coarse grid correction and
one after; 4) prolongation by bilinear interpolation for corrections; 5) restriction of residuals by
full weighting. The velocity field (Vr, Vo) were calculated solving numerically the Navier-Stokes
equations. More information about the hydrodynamic computations can be viewed in [24, 25].

The error criteria employed are: the discrete L2 norm of the residuals and the discrete L.
norm of the difference between the numerical solutions of two consecutive defect - correction
iterations are smaller than 108, Results that can be used to validate the accuracy of the present heat
transfer computations are not available in literature. The mesh independence of the Nu number and

dimensionless cylinder surface temperature was the accuracy test used in the present computations.

d0i:10.20944/preprints202104.0249.v1
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4. Results and discussions

The dimensionless groups of the present problem can be divided into the following two classes:
(1) conjugate convection — diffusion heat transfer dimensionless groups, Pr, Re, @ and {; (2)

radiative dimensionless groups, 8B, £, K and Rdo().

The assumption of steady laminar flow imposes Re < Rect = 46. The numerical values
considered for the Pr number are, Pr > 1.0. The thermal conductivity ratio, &, takes values from
1 to 102 For values of & little than 1.0, the values of the dimensionless cylinder surface
temperature are very small (for example, for @ = 0.1, Z, ¢ < 0.1). In this case the effects of the
radiative heat transfer become negligible. The values of the radiative dimensionless groups 8B, €
and X are given by the values of a, ka, # and ¢. The numerical values considered for the radius of
the cylinder are in the range, 0.01 m <a < 10 m. The values of ka and 5 were taken from [1]. The
emissivity ¢ takes values in the range, 0.5 < & < 0.9. The values considered for the radiation —
conduction parameters Rdo(y) are, 0 < Rdogy < 1000. In all computations {"'was considered equal to
=0.833333(To/ T =1.2).

The quantities used to quantify the influence of the thermal radiation on the conjugate heat
transfer are the ratios:

Z.s (Rd # 0) Nu (Rd + 0)

=7 (Rd=0) ™~ Nu(Rd=0)

In the next paragraphs, the ratios #s and #n will be called surface ratio and flux ratio, respectively.

The effect of thermal radiation on the conjugate heat transfer is considered significant when
|ny —1]>0.1.

The first aspect analysed is the influence of the boundary conditions (9¢) and (9d) on the
numerical solution of the P1 model. Figure 2 shows that the numerical solution calculated with the
boundary condition (9c¢) is very sensitive to the value of rinr. When rin increases, the numerical
solution calculated with the boundary condition (9c) tends to the numerical solution calculated
with the boundary condition (9d). Otherwise, the influence of the values of rin on the numerical

solution calculated with the boundary condition (9d) is negligible (obviously, the previous

d0i:10.20944/preprints202104.0249.v1


https://doi.org/10.20944/preprints202104.0249.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 April 2021 d0i:10.20944/preprints202104.0249.v1

statements are valid for values of rins usually used in the analysis of the heat transfer from circular
cylinders in steady flows). For these reasons, the numerical solutions presented in the next

paragraphs for the P model were calculated with the boundary condition (9d).

The influence of the thermal radiation on the conjugate heat transfer is presented in figures
3 — 7. The numerical data plotted in figures 3 to 7 represents a selection from the numerical
experiments made. This selection captures the salient features of the process. From the numerical

results obtained the following remarks can be made:

- Qualitatively, the effect of the thermal radiation on the conjugate heat transfer is the
same for both Po and P1 models; the increase in the radiation — conduction parameter
decreases the dimensionless surface temperature of the cylinder and increases the Nu
number;

- Quantitively, in spite of the fact that a relation between Rdo and Rd; is difficult to find,
there are significant differences between the results provided by the Po and P1 models;
the relation between Rdo and Rd: is given by the relation between ka and Sr; according
to Modest [1], the relations used to calculate the Rosseland mean extinction coefficient
[r are questionable; usually, one can assume fr > ka but not Sr >> ka;

- For the Po model, the effect of the thermal radiation on the conjugate heat transfer
becomes significant when Rdo > 0.1,

- For the P1 model, the effect of the thermal radiation on the conjugate heat transfer
becomes significant when Rd: > 100 regardless the values of the other parameters;
however, the effect of the other radiation parameters on the conjugate heat transfer can
not be considered negligible; the increase in the absorption coefficient ka increases the
effect of thermal radiation on the conjugate heat transfer while the increase in the total
attenuation factor # and the emissivity coefficient ¢ decreases the effect of thermal
radiation on the conjugate heat transfer;

- Based on the numerical experiments made, one can state that for the P1 model the effect
of thermal radiation on the conjugate heat transfer becomes significant when,

%2 Rd,
1-¢ _ KRd,

i _$(1_€)>100
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- The increase in the conductivity ratio @ decreases the values of the surface ratio #s and
increases the values of the flux ratio #n;
- The increase in the convection rate (e.g. the product Re Pr) decreases the effect of
thermal radiation;
- The increase in the wire dimensionless radius ro increases the cylinder surface
dimensionless temperature and Nu number.
The Po approximation reduces the radiation — convection — conduction problem to a standard
convection — conduction problem with strongly temperature dependent thermal conductivity. The
increase in the thermal conductivity of the fluid decreases the temperature gradient at the interface
but amplifies the heat flux. The global result is the enhancement of the heat transfer rate even for
small values of Rdo. It must be also mentioned that, for the Rosseland approximation, the same
results were obtained neglecting the radiation transfer in the tangential direction.

In a first approximation, one can consider the P1 model similar to the model of mass
transfer accompanied by a reversible chemical reaction with an unusual reaction rate and
equilibrium constant equal to unity (see for example [26]). The dimensionless temperature is the
reactant of the reversible chemical reaction while the dimensionless directed — integrated intensity
of the radiation is the product of the reversible chemical reaction. However, there are differences
between the present mathematical model and the mathematical model for the mass transfer
accompanied by a reversible chemical reaction. In the case of the mass transfer accompanied by a
reversible chemical reaction all the species involved in process obey the same mass transfer
mechanism, convection — diffusion — reaction. For the present mathematical model, equation (7)
is a convection — diffusion — reaction equation while equation (8) is a diffusion — reaction equation.
For any convection — diffusion — reaction equation a boundary layer with variable thickness
develops on the surface of the cylinder from the region of the front stagnation point. The thickness
of the boundary layer depends on the value of the product Re Pr. Outside the boundary layer the
numerical values of the variables are approximately constant. For a diffusion — reaction problem
the boundary layer does not occur. A diffusion film of constant thickness may occur in some
conditions. The coupling and interaction between the solution of a convection — diffusion —
reaction equation (the dimensionless temperature) and the solution of a diffusion — reaction
equation (the dimensionless directed — integrated intensity of the radiation) explains the features
of the present P solution.


https://doi.org/10.20944/preprints202104.0249.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 April 2021

The effect of the order of approximation of spherical harmonics model on the solution of
the present problem is the last issue discussed in this section. The results presented in [1] and [27]
for a thick medium show that the differences between the P1 approximation, high order spherical
harmonics approximations and the solution of the full radiative transfer equation are small.
Significant differences exist between the Po approximation, high order spherical harmonics
approximations and the solution of the full radiative transfer equation. Thus, one can consider the
P1 approximation used in this work an efficient and sufficiently accurate solution for the present
radiative heat transfer problem (the optical thickness for the present medium is very large).

5. Conclusions

The effect of thermal radiation on the steady-state, conjugate heat transfer from a circular
cylinder with an internal heat source in steady laminar crossflow was analysed in this work. The
radiative transfer is modeled by the Po (Rosseland) and P1 approximations. Two free stream
boundary conditions are tested for the dimensionless directed — integrated intensity of the radiation

(P1approximation).

The effect of the thermal radiation on the conjugate heat transfer consists of the increase in
the Nu number and the decrease in the cylinder surface temperature. As expected, for both
approximations, the increase in the radiation — conduction group increases the effect of the thermal
radiation on the conjugate heat transfer. However, there are significant quantitative differences
between the results provided by the Po and P1 approximations. For the Py approximation, the
increase in the absorption coefficient ky and the decrease in the total attenuation factor f and the

emissivity coefficient ¢ increase the effect of thermal radiation on the conjugate heat transfer.

d0i:10.20944/preprints202104.0249.v1
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Figures Caption

Figure 1. Schematic of the problem.

Figure 2. The influence of the free stream boundary condition on the solution of the P; model for
Re=30,Pr=1,r0=05 % =0.01,8=09and £ =0.269 (a=0.1m, ka=1m?, =3 m’and
¢ =0.7); () ns; (b) #n.

Figure 3. The influence of the radiation - conduction parameters Rdo) on the surface ratio for Re
=30,Pr=1,r0=05% =0.01,8=09(3)and £ =0.269 (a=0.1m, ka=1m?, g=3(10)
m?tande=0.7); (a) @ = 1; (b) @ = 10.

Figure 4. The influence of the conduction — radiation parameter Rdoy on the flux ratio for Re =
30,Pr=1,r0=05,% =0.01,8=0.9 (3)and £ = 0.269 (a=0.1m,ka=1m?, =3 (10) m*
and ¢ =0.7); (a) @ = 1; (b) @ = 10.

Figure 5. The influence of the convection rate on the surface ratio and cylinder surface
dimensionless temperature for Re = 30, ro = 0.5, ® =1, X = 0.01, B = 0.9 and £ = 0.269 (a =
0.1mka=1m? g=3mtande=0.7); (@) #s; (b) Z,s.

Figure 6. The influence of the convection rate on the flux ratio and average Nu number for Re =
30,10=05&=1, XK =001,8=09and £E=0.269 (a=0.1m,ka=1m?’ g=3mlande =
0.7); (a) nn; (b) Nu.

Figure 7. The influence of the wire dimensionless radius ro on the cylinder surface dimensionless
temperature and the average Nu number for P1 model at Re = 30, Pr =5, @ =100, X = 0.01, B =
0.9and € =0.269 (a=0.1m,ka=1m?, =3 mtand ¢ =0.7); (a) Z.s; (b) Nu.
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