

**Autoimmune Thrombotic Thrombocytopeny associated with COVID-19 Infection or
Vaccination: Learning from Heparin-induced Thrombocytopenia**

Michel Goldman, MD, PhD

Institute for Interdisciplinary Innovation in healthcare (I3h)

Université libre de Bruxelles, Belgium

mgoldman@i3health.eu

Cédric Hermans, MD, PhD

St-Luc University Hospital

Université catholique de Louvain, Belgium

cedric.hermans@uclouvain.be

Abstract: Prothrombotic thrombocytopeny mimicking heparin-induced thrombocytopenia has been observed in patients with severe COVID-19 and after immunisation with the Vaxzevria vaccine. Herein, we discuss the pathogenesis of this disorder focusing on the possible involvement of anti-platelet factor 4 (PF4) autoantibodies.

Keywords: vaccine; adenovirus; COVID-19; spike; endothelial; vector; coagulation; clot; thrombopenia; platelet

Introduction

There is convincing evidence that autoimmunity is involved in the pathogenesis of COVID-19^{1,2}. Regarding the severe forms of the disease in which thromboinflammation is prominent, both endothelial cells and platelets might be affected by autoimmune reactions in addition to direct viral infection and cytokine-mediated activation^{3,4}. Indeed, multiple anti-phospholipid antibodies have been detected in the blood of hospitalized patients in relation with the severity of the disease and the formation of neutrophil extracellular traps known to contribute to thrombotic events⁵. A recent study further established that among anti-phospholipid autoantibodies detected in COVID-19 patients, IgG to cardiolipin and phosphatidylserine/prothrombin might be the ones driving endothelial cell

activation⁶. In addition, anti-annexin A2 autoantibodies found in critically ill patients were suggested to contribute to small vessel damages in the lungs⁷.

Besides endothelial cell damages, activation of platelets is the other cornerstone of the prothrombotic state characteristic of COVID-19⁴. Several factors are involved including mitochondrial disturbances caused by hypoxia, mediators of inflammation and other stressors, leading to platelet hyperactivation and apoptosis^{4,8}. Furthermore, infection of platelets by the SARS-CoV-2 virus might also contribute to their activation via ACE2-dependent⁹ as well as non-ACE2 mechanisms involving heparan sulfate¹⁰ or CD147¹¹. Following viral entry, SARS-CoV-2 ssRNA might trigger intracellular Toll-like receptor 7-dependent activation pathways as in the case of influenza infection¹². Antibody-mediated mechanisms involving engagement of Fc_Y receptor RIIA on platelets were also shown to contribute to procoagulant activity in severe COVID-19^{13,14}. Although the antigenic specificity of these antibodies could not always be defined, antibodies to platelet factor 4 were shown to be involved in several cases¹⁵⁻²².

Platelet factor 4, also called CXCL4, is a tetrameric chemokine stored in platelet alpha-granules²³. Upon platelet activation, PF4 is released and binds polyanions with high affinity²⁴. Indeed, PF4 was shown to play a critical role in heparin-induced thrombocytopenia (HIT)²⁵. Below, we summarize the key features of HIT before proposing that COVID-19 causes an autoimmune thrombotic thrombocytopenia mimicking HIT.

PF4 autoimmunity in heparin-induced thrombocytopenia (HIT)

Heparin-induced thrombocytopenia (HIT) is a severe prothrombotic condition that occurs in less than 5 % of patients receiving intravenous unfractionated heparin, usually between 4 and 10 days after initiation of the treatment²⁵. Thrombotic complications can develop in unusual locations such as cerebral venous sinuses²⁶. Thrombocytopenia is a hallmark of HIT, blood platelet counts decreasing by more than 50 % in most patients. After exclusion of other causes of thrombocytopenia, the clinical diagnosis of HIT is established by immune-enzymatic detection of circulating antibodies to PF4/heparin complexes, followed by a functional assay demonstrating platelet activation by patient's serum in presence of heparin²⁵.

The fine specificity of PF4 autoantibodies causing HIT has been identified through a series of elegant studies which established that the epitope recognized on PF4 tetramers is exposed upon conformational changes induced by their interaction with heparin or other long polyanions²⁷. Indeed, injection of heparin has been shown to induce the release of PF4²⁸, resulting in the assembly of PF4/heparin complexes which activate complement and bind circulating B lymphocytes in a complement-dependent manner²⁹. B cells responsible for the synthesis of PF4 autoantibodies display unique characteristics which enable them to rapidly mount an IgG response following a first exposure to heparin³⁰. Indeed, B cells able to produce anti-PF4 antibodies are present in healthy individuals in an anergic state that normally prevents the development of PF4 immune response. This B cell tolerance might be broken upon heparin exposure and under some inflammatory conditions³¹. In these situations, anti-PF4 IgG antibodies elicit thrombus formation and thrombocytopenia via multiple mechanisms.

Immune complexes assembled with PF4 bound to heparin induce platelet activation and aggregation by crosslinking Fc γ RIIA receptors²⁵. Anti-PF4 antibodies also activate the procoagulant activity of monocytes by cross-linking their Fc γ RI receptors, and of endothelial cells via the recognition of PF4 firmly attached to surface proteoglycans³². Thrombopenia results from enhanced apoptosis and clearance of antibody-coated platelets^{13,33} in addition to consumption in the coagulation process⁸.

A prothrombotic syndrome with all the features of HIT has been reported in absence of heparin exposure³⁴. These observations led to define a so-called “spontaneous HIT” caused by anti-PF4 autoantibodies elicited by polyanions reproducing the conformational changes induced in PF4 tetramers by heparin. Potential polyanions triggering “spontaneous HIT” include bacterial wall components, nucleic acid materials or endogenous proteoglycans released by damaged cells³⁵.

Antibody-mediated thrombotic thrombocytopenia during COVID-19: an autoimmune reaction induced by SARS-CoV-2 ?

The high incidence of thrombotic and thromboembolic events during severe COVID-19 results in the frequent administration of heparin in affected patients³⁶. When thrombocytopenia develops in this setting, HIT must be considered as possible cause¹⁸. Indeed, several studies report the presence of anti-PF4/heparin antibodies in COVID-19 patients. However, these antibodies sometimes occur in absence of heparin administration¹⁸. Furthermore, they do not always activate platelets in presence of heparin/PF4 complexes³⁷ although they do so in presence of PF4 alone¹⁴, suggesting that they were induced by another mechanism than classical HIT²⁷.

Indeed, IgG antibodies present in the serum of severe COVID-19 patients were found to induce platelet apoptosis and procoagulant activity via Fc γ RIIA receptor-dependent mechanisms¹³. The antigenic specificity of these antibodies was not defined but one can speculate that at least some of them are directed against PF4.

The model that we are proposing is first based on the hyperactivation of platelets during COVID-19, resulting in the release of PF4 in the circulation³⁸. Circulating PF4 could form complexes with endogenous polyanionic proteoglycans (PG) released by damaged endothelial cells. Syndecan-1 and endocan are potential PG candidates as since their serum levels are increased in severely ill COVID-19 patients in association with other markers of endothelial injury³⁹⁻⁴¹. Complexes formed between PF4 and endothelial cell-derived polyanionic PG would then stimulate extrafollicular B cells producing anti-PF4 antibodies. Indeed, autoimmune responses elicited by extrafollicular B cells were previously suggested to be involved in the pathophysiology of severe COVID-19⁴². Anti-PF4 antibodies would then recapitulate the sequence of events responsible for HIT (figure 1). Besides anti-PF4 autoantibodies, anti-phospholipid antibodies could also contribute to platelet activation as well as anti-SARS-CoV-2 antibodies as observed in other viral diseases^{43,44}

Possible relevance to prothrombotic thrombocytopeny following COVID-19 vaccination

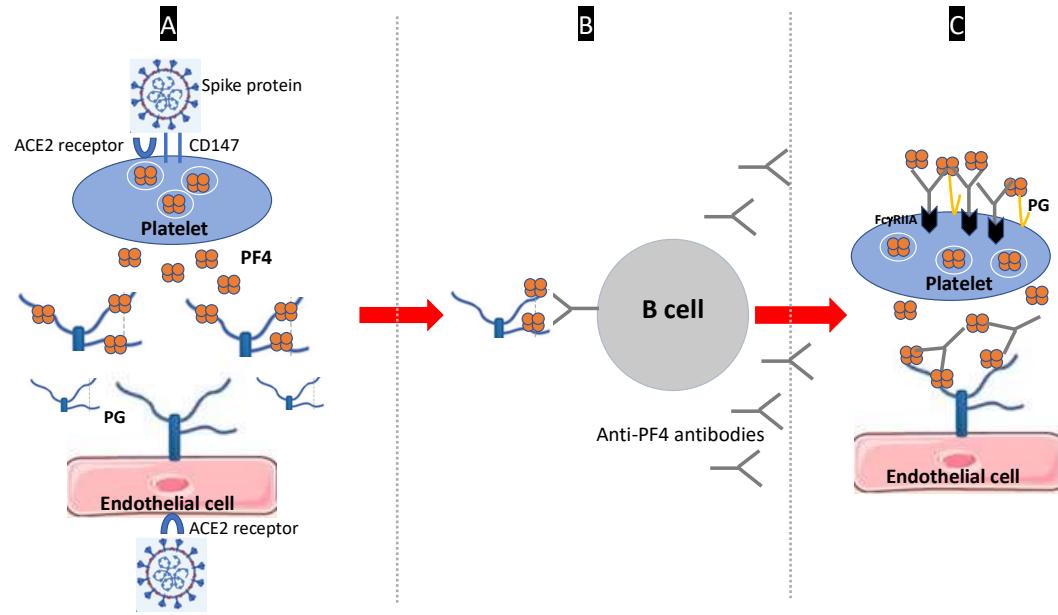
Several observations of prothrombotic thrombocytopenic events following vaccination with the Oxford–AstraZeneca chimpanzee adenovirus vectored vaccine ChAdOx1 nCoV-19 (Vaxzevria) were recently reported in several European countries.

The incidence of these events is very low (around 1 in 100 000 recipients) but appears superior to what would have been occurred by pure coincidence. As the clinical presentation is often reminiscent of HIT, the hypothesis of a vaccine-induced autoimmune response to PF4 seems plausible. Indeed, Greinacher et al. and Schultz et al. recently provided strong biological evidence to support this hypothesis by identifying platelet-activating anti-PF4 antibodies in sera of patients suffering from unusual thrombotic events associated with thrombocytopenia within 4 to 16 days after injection of the Vaxzevria vaccine^{45,46}. The vaccine-induced anti-PF4 autoimmune response does not seem related to molecular mimicry since the anti-PF4 antibodies did not cross-react with the SARS-CoV-2 spike protein⁴⁷. As adenoviruses are known to activate platelets⁴⁸, it has been proposed that the replication-deficient adenoviral vector could be directly responsible for the release of platelet-derived PF4⁴⁵. However, this hypothesis implies that significant amounts of vaccine particles would reach the bloodstream after intramuscular injection, which seems unlikely. An alternative scenario depicted in figure 2 would involve endothelial cells. Indeed, endothelial cells are efficiently transduced upon intramuscular injection⁴⁹. They might expose the spike protein on their luminal side, possibly bound to PG of the glycocalyx as heparan sulfate. PG were shown to be attachment factors for the spike protein⁵⁰. Platelets might then be recruited and activated by the spike protein bound to endothelial cells⁹. The PF4 released by activated platelets could combine with anionic proteoglycans shed from the endothelial cells (figure 2). In such a scenario, both the adenovirus and the spike protein would contribute to the development of immunogenic PF4 following vaccination with ChAdOx1 nCov-19 (figure 2). Ongoing investigations on a few cases of atypical thrombotic events after administration of the Johnson and Johnson vaccine

should take this hypothesis into consideration. If it is confirmed, the challenge will be to identify the factors that precipitate these severe complications in just very few individuals. Learning from spontaneous autoimmune HIT, genetic factors - e.g. related to the FC γ RIIA receptor polymorphism⁵¹ - and previous infections which might have skewed the B cell repertoire⁵² should be considered.

References

1. Khamsi R. Rogue antibodies could be driving severe COVID-19. *Nature* 2021; 590:29–31
2. Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. *MedRxiv* 2020; doi.org/10.1101/2020.12.10.20247205
3. Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. *Nat. Rev. Immunol.* 2021; doi.org/10.1038/s41577-021-00536-9
4. Gu SX, Tyagi T, Jain K, et al. Thrombocytopenia and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. *Nat. Rev. Cardiol.* 2020; 18:194–209
5. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. *Sci. Transl. Med.* 2020; 12: eabd3876
6. Shi H, Zuo Y, Gandhi AA, et al. Endothelial cell-activating antibodies in COVID-19. *MedRxiv* 2021; doi.org/10.1101/2021.01.18.21250041
7. Zuniga M, Gomes C, Carsons SE, et al. Autoimmunity to the lung protective phospholipid-binding protein annexin A2 predicts mortality among hospitalized COVID-19 patients. *MedRxiv* 2021; doi.org/10.1101/2020.12.28.20248807
8. Koupnova M, Freedman JE. Platelets and COVID-19: Inflammation, Hyperactivation and Additional Questions. *Circ. Res.* 2020;1419–21
9. Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. *J. Hematol. Oncol.* 2020; 13:1–22
10. Clausen TM, Sandoval DR, Spliid CB, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. *Cell* 2020; 183:1043–1057
11. Wang K, Chen W, Zhou Y-S, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. *BioRxiv* 2020; doi.org/10.1101/2020.03.14.988345
12. Koupnova M, Corkrey HA, Vitseva O, et al. The role of platelets in mediating a response to human influenza infection. *Nat. Commun.* 2019; doi.org/10.1038/s41467-019-09607-x
13. Althaus K, Marini I, Zlamal J, et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. *Blood* 2020; 137:1061–71
14. Nazy I, Jevtic SD, Moore JC, et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. *J. Thromb. Haemost.* 2021; doi.org/10.1111/jth.15283
15. Parzy G, Daviet F, Puech B, et al. Venous thromboembolism events following


venovenous extracorporeal membrane oxygenation for severe acute respiratory syndrome coronavirus 2 based on CT scans. *Crit. Care Med.* 2020; 48:e971–e975

16. May JE, Siniard RC, Marques M. The challenges of diagnosing heparin-induced thrombocytopenia in patients with COVID-19. *Res. Pract. Thromb. Haemost.* 2020; 4:1066–1067.
17. Riker RR, May TL, Fraser GL, et al. Heparin-induced thrombocytopenia with thrombosis in COVID-19 adult respiratory distress syndrome. *Res. Pract. Thromb. Haemost.* 2020; 4:936–941
18. Liu X, Zhang X, Xiao Y, et al. Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19 patients receiving heparin-involved treatment. *MedRxiv* 2020; doi.org/10.1101/2020.04.23.20076851
19. Lingamaneni P, Gonakoti S, Moturi K, Vohra I, Zia M. Heparin-Induced Thrombocytopenia in COVID-19. *J. Invest. Med. High Impact Case Rep.* 2020; 8: 2324709620944091
20. Patell R, Khan AM, Bogue T, et al. Heparin induced thrombocytopenia antibodies in Covid-19. *Am. J. Hematol.* 2020; 95:e295–296.
21. Daviet F, Guervilly C, Baldesi O, et al. Heparin-induced thrombocytopenia in severe COVID-19. *Circulation* 2020; 142:1875–1877
22. Sartori M, Cosmi B. Heparin-induced thrombocytopenia and COVID-19. *Hematol. Rep.* 2021; 13 :8857
23. Kowalska MA, Rauova L, Poncz M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. *Thromb. Res.* 2010; 125:292–296
24. Rauova L, Poncz M, McKenzie SE, et al. Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia. *Blood* 2005; 105: 131–138
25. Greinacher A. Heparin-Induced Thrombocytopenia. *N. Engl. J. Med.* 2015; 373:252–261
26. Fesler MJ, Creer MH, Richart JM, et al. Heparin-induced thrombocytopenia and cerebral venous sinus thrombosis: Case report and literature review. *Neurocrit. Care* 2011; 15:161–165.
27. Nguyen TH, Medvedev N, Delcea M, Greinacher A. Anti-platelet factor 4/polyanion antibodies mediate a new mechanism of autoimmunity. *Nat. Commun.* 2017; 8: 14945 doi: 10.1038/ncomms14945
28. Dawes J, Smith RC, Pepper DS. The release, distribution, and clearance of human β -thromboglobulin and platelet factor 4. *Thromb. Res.* 1978; 12(5):851–61.
29. Khandelwal S, Lee GM, Hester CG, et al. The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21). *Blood* 2016; 128:1789–99
30. Staibano P, Arnold DM, Bowdish DME, Nazy I. The unique immunological features of heparin-induced thrombocytopenia. *Br. J. Haematol.* 2017; 177:198–207
31. Zheng Y, Wang AW, Yu M, et al. B-cell tolerance regulates production of antibodies causing heparin-induced thrombocytopenia. *Blood* 2014; 123: 931–934
32. Madeeva D, Cines DB, Poncz M, Rauova L. Role of monocytes and endothelial cells in heparin-induced thrombocytopenia. *Thromb. Haemost.* 2016; 116:806–812
33. Rollin J, Pouplard C, Gruel Y. Risk factors for heparin-induced thrombocytopenia: Focus on Fc γ receptors. *Thromb. Haemost.* 2016;116:799–805
34. Warkentin TE, Basciano PA, Knopman J, Bernstein RA. Spontaneous heparin-induced thrombocytopenia syndrome: 2 new cases and a proposal for defining this disorder.

Blood 2014; 123:3651–3654

35. Greinacher A, Selleng K, Warkentin TE. Autoimmune heparin-induced thrombocytopenia. *J. Thromb. Haemost.* 2017; 15:2099–2114
36. Hippenstein JA, LaRiviere WB, Colbert JF, Langou t-Astri CJ, Schmidt EP. Heparin as a therapy for COVID-19: Current evidence and future possibilities. *Am. J. Physiol. - Lung Cell. Mol. Physiol.* 2020; 319:L211–2217
37. Brodard J, Kremer Hovinga JA, Fontana P, Studt J, Gruel Y, Greinacher A. COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. *J. Thromb. Haemost.* 2021; doi.org/10.1111/jth.15262
38. Comer SP, Cullinan S, Szklanna PB, et al. COVID-19 induces a hyperactive phenotype in circulating platelets. *PLOS Biol.* 2021 19(2):e3001109.
39. Suzuki K, Okada H, Tomita H, et al. Possible involvement of Syndecan-1 in the state of COVID-19 related to endothelial injury. *Thromb. J.* 2021; doi.org/10.1186/s12959-021-00258-x
40. Fraser DD, Patterson EK, Slessarev M, et al. Endothelial injury and glycocalyx degradation in critically ill coronavirus disease 2019 patients: Implications for microvascular platelet aggregation. *Crit. Care Expl.* 2020; 2:e0194
41. Medetalibeyoglu A, Emet S, Kose M, et al. Serum Endocan Levels on Admission Are Associated With Worse Clinical Outcomes in COVID-19 Patients: A Pilot Study. *Angiology* 2021;7:187–193
42. Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. *Nat. Immunol.* 2020; 21:1506–1516
43. Boillard E, Paré G, Rousseau M, et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. *Blood* 2014; 123:2854–2863
44. Hottz ED, Oliveira MF, Nunes PCG, et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. *J. Thromb. Haemost.* 2013; 11:951–962
45. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. *N. Engl. J. Med.* 2021; doi/10.1056/NEJMoa2104840
46. Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. *N Engl J Med* 2021 ; doi/10.1056/NEJMoa2104882
47. Greinacher A, Mayerle J, Aebischer A, et al. Anti-SARS-CoV-2 Spike Protein and Anti-Platelet Factor 4 Antibody Responses Induced by COVID-19 Disease and ChAdOx1 nCov-19 vaccination *Research Gate* 2021; 10.21203/rs.3.rs-404769/v1
48. Mercier S, Gahéry-Segard H, Monteil M, et al. Distinct Roles of Adenovirus Vector-Transduced Dendritic Cells, Myoblasts, and Endothelial Cells in Mediating an Immune Response against a Transgene Product. *J Virol* 2002;76:2899–911.
49. Liu L, Chopra P, Li X, et al. Heparan sulfate proteoglycans as attachment factor for SARS-CoV-2. *BioRxiv* 2020; PMC7263551
50. Rollin J, Pouplard C, Gruel Y. Risk factors for heparin-induced thrombocytopenia: Focus on Fcγ receptors. *Thromb Haemost* 2016; 116:799–805.
51. Greinacher A, Holtfreter B, Krauel K, et al. Association of natural anti-platelet factor 4/heparin antibodies with periodontal disease. *Blood* 2011;118:1395–401.

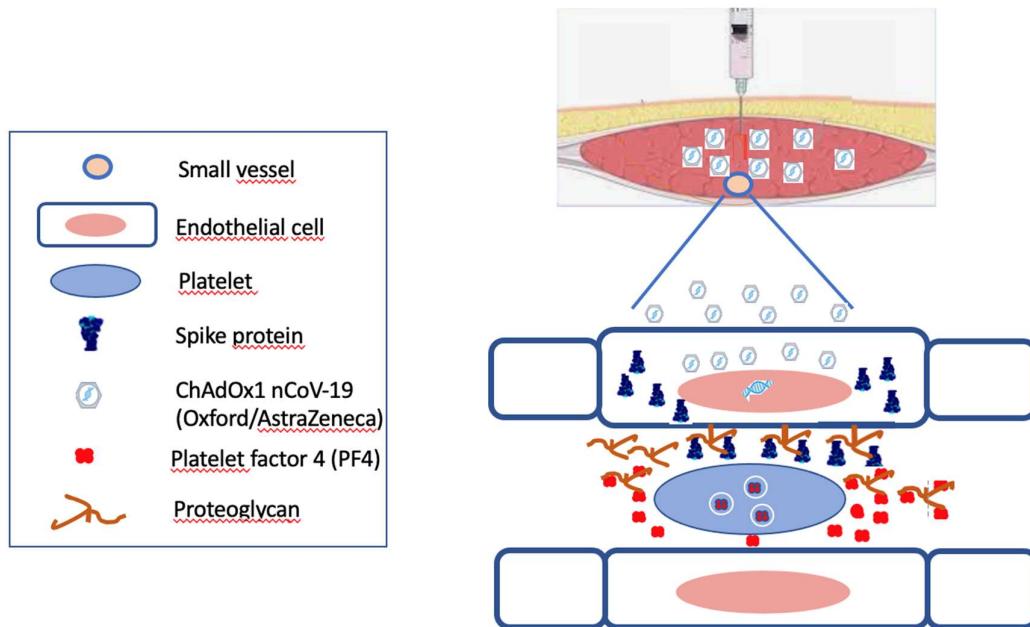


Figure 1. Induction of thrombotic thrombocytopenia during COVID-19

A Sars-CoV-2 induces the release of platelet factor 4 (PF4) by activated platelets and of polyanionic proteoglycans (PG) by endothelial cells (e.g. syndecan, endocan)

B Complexes of PF4 and PG expose PF4 immunogenic epitopes which activate extrafollicular B lymphocytes secreting PF4 autoantibodies

C PF4 autoantibodies bind complexes of PF4 and PG on platelets and endothelial cells and stimulate their procoagulant activities. Cross-linking of FC_γreceptor IIA also promote apoptosis and clearance of antibody-decorated platelets.

Figure 2. Thrombotic thrombocytopenia after Vaxzevria vaccination

- (1) After intramuscular injection, vaccine adenoviruses infect endothelial cells, inducing their production of the SARS-CoV-2 Spike protein
- (2) Heparansulfate PG would bind the spike protein on the luminal side of endothelial cells
- (3) Spike proteins would activate platelets via ACE-2 dependent and ACE-2 independent mechanisms
- (4) PF4 released by activated platelets would become immunogenic after binding heparan sulfate motifs shed from endothelial cells.