Accelerated degradation of collagen membranes (CMs) in diabetic rats is associated with increased infiltration of macrophages and blood vessels. Since pre-implantation immersion of CMs in cross-linked high molecular weight hyaluronic acid (CLHA) delays membrane degradation, we evaluated its effect on the number of macrophages and endothelial cells (ECs) within the CM. Diabetes was induced with streptozotocin in 16 rats, while 16 healthy rats served as control. CM discs were labeled with biotin, soaked in CLHA or PBS and implanted under the scalp. Fourteen days later, CMs were embedded in paraffin and the number of macrophages and ECs within the CMs was determined using antibodies against CD68 and Transglutaminase II, respectively. Diabetes increased the number of macrophages and ECs within the CMs (∼2.5-fold and 4-fold, respectively). Immersion of CMs in CLHA statistically significantly reduced the number of macrophages (p<0.0001) in diabetic rats, but not that of ECs. In the healthy group, CLHA had no significant effect on the number of either cells. Higher residual collagen area and membrane thickness in CLHA-treated CMs in diabetic animals were significantly correlated with reduced number of macrophages but not ECs. Immersion of CM in CLHA inhibits macrophage infiltration and reduces CM degradation in diabetic animals.
Keywords:
Subject: Medicine and Pharmacology - Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.