Abstract
It is crucial to forecast the water demand accurately for supplying water efficiently and stably in a water supply system. In particular, accurately forecasting short-term water demand helps in saving energy and reducing operating costs. With the introduction of the Smart Water Grid (SWG) in a water supply system, the amount of water consumption is obtained in real time through an advanced metering infrastructure (AMI) sensor, which can be used for forecasting the short-term water demand. The models widely used for water demand forecasting include the autoregressive integrated moving average, radial basis function-artificial neural network, quantitative multi-model predictor plus, and long short-term memory. However, there is a lack of research on assessing the performance of models and forecasting the short-term water demand by applying the data on the amount of water consumption by purpose and the pipe diameter of an end-use level of the SWG demonstration plant in each demand forecasting model. Therefore, in this study, the short-term water demand was forecasted for each model using the data collected from the AMI, and the performance of each model was assessed. The Smart Water Grid Research Group installed ultrasonic-wave-type AMI sensors in the block 112 located in YeongJong Island, Incheon, and the actual data used for operating the SWG demonstration plant were adopted. The performance of the model was assessed by using the residual, root mean square error (RMSE), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency (NSE), and Pearson correlation coefficient (PCC) as indices. The water demand forecast was slightly underestimated in models that employed the assessment results based on the RMSE and NRMSE. Furthermore, the forecasting accuracy was low for the NSE due to a large number of negative values; the correlation between the observed and forecasted values of the PCC was not high, and it was difficult to forecast the peak amount of water consumption. Therefore, as the short-term water demand forecasting models using only time and the amount of water consumption have limitations in reflecting the characteristics of consumers, a water supply system can be managed more precisely if other factors (weather, customer behavior, etc.) influencing the water demand are applied.