Preprint
Article

Soil and Grassland Effects on Grassland Net Photosynthesis in Gannan, China, from 2000 to 2018

This version is not peer-reviewed.

Submitted:

12 April 2021

Posted:

14 April 2021

You are already at the latest version

Abstract
What is the ideal soil-grass combination for maximum photosynthesis? In this study, we investigated how soil and grassland types affect photosynthesis in the grasslands of Gannan, China. We divided the grasslands of Gannan into 166 study sites, each with a unique soil-grass combination by intersecting the soil and ecoregion maps using ArcGIS. We obtained 19 years of data on the Net Photosynthesis (PsnNet) of grasslands in the area from 2000 to 2018 and then divided them into “growing season” (June to September) and “non-growing season” (October top May). Between 2000 and 2018, PsnNet of grasslands showed a gradually increasing trend. The effect of soil type on PsnNet was not significant during the growing season. However, it was highly significant during the non-growing season. Among the soil types, grasses that grew in Mollic, Gelic, and Haplic soils had the highest rate of photosynthesis. The difference in PsnNet among the various grass types was highly significant during both seasons. However, Tropical and Subtropical succulent evergreen broad-leaf shrubs and Temperate meadows had the highest rate of photosynthesis. Additionally, there was a highly significant difference in PsnNet among the various soil-grass interactions. In the growing season, TStEgBLS growing Eutric soils had the highest PsnNet. However, SaDBLS growing in Gelic soils had the the highest.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

278

Views

242

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated