Preprint
Article

Can Deep Learning Extract Useful Information about Energy Dissipation and Effective Hydraulic Conductivity from Gridded Conductivity Fields?

Altmetrics

Downloads

195

Views

273

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 April 2021

Posted:

15 April 2021

You are already at the latest version

Alerts
Abstract
We confirm that energy dissipation weighting provides the most accurate approach to determining the effective hydraulic conductivity (Keff) of a binary K grid. A deep learning algorithm (UNET) can infer Keff with extremely high accuracy (R2 > 0.99). The UNET architecture could be trained to infer the energy dissipation weighting pattern from an image of the K distribution with high fidelity, although it was less accurate for cases with highly localized structures that controlled flow. Furthermore, the UNET architecture learned to infer the energy dissipation weighting even if it was not trained on this information directly. However, the weights were represented within the UNET in a way that was not immediately interpretable by a human user. This reiterates the idea that even if ML/DL algorithms are trained to make some hydrologic predictions accurately, they must be designed and trained to provide each user-required output if their results are to be used to improve our understanding of hydrologic systems most effectively.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated