Preprint
Article

High Light Intensities Can Be Used to Grow Healthy and Robust Cannabis Plants During the Vegetative Stage of Indoor Production

This version is not peer-reviewed.

Submitted:

13 April 2021

Posted:

15 April 2021

You are already at the latest version

Abstract
Although the vegetative stage of indoor cannabis production can be relatively short in duration, there is a high energy demand due to higher light intensities (LI) than the clonal propagation stage and longer photoperiods than the flowering stage (i.e., 16 – 24 hours vs. 12 hours). While electric lighting is a major component of both energy consumption and overall production costs, there is a lack of scientific information to guide cultivators in selecting a LI that corresponds to their vegetative stage production strategies. To determine the vegetative plant responses to LI, clonal plants of ‘Gelato’ were grown for 21 days with canopy-level photosynthetic photon flux densities (PPFD) ranging between 135 and 1430 µmol·m-2·s-1 on a 16-hour photoperiod (i.e., daily light integrals of ≈ 8 to 80 mol·m-2·d-1). Plant height and growth index responded quadratically; the number of nodes, stem thickness, and aboveground dry weight increased asymptotically; and internode length and water content of aboveground tissues decreased linearly with increasing LI. Foliar attributes had varying responses to LI. Chlorophyll content index increased asymptotically, leaf size decreased linearly and specific leaf weight increased linearly with increasing LI. Generally, PPFD levels of 900 µmol·m-2·s-1 produced compact, robust plants that are commercially relevant, while PPFD levels of ≈ 600 µmol·m-2·s-1 promoted plant morphology with more open architecture – to increase airflow and reduce the potential foliar pests in compact (i.e., indica-dominant) genotypes.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1040

Views

2055

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated