The objective of this study was to correlate the binding of drugs on a very popular nanoparticulate polymeric matrix; PLGA nanoparticles with their main constitutional, electronic and physico-chemical descriptors. Gaussian Processes (GPs) was the artificial intelligence machine learning method that was utilized to fulfil this task. The method could successfully model the results where optimum values of the investigated descriptors of the loaded drugs were deduced. A percentage bias of 12.68 % ± 2.1 was obtained in predicting the binding energies of a group of test drugs. As a conclusion, GPs could successfully model the drugs-PLGA interactions associated with a good predicting power. The GPs-predicted binding energies (ΔG) can easily be projected to the drugs loading as was previously proven. Adopting the “Pharmaceutics Informatics” approach can save the pharmaceutical industry and the drug delivery scientists a lot of exerted resources, efforts and time.
Keywords:
Subject: Chemistry and Materials Science - Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.