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Abstract: Ethnopharmacology experts face several challenges when identifying and retrieving doc-

uments and resources related to their scientific focus. The volume of sources that need to be moni-

tored, the variety of formats utilized, the different quality of language use across sources, present 

some of what we call “big data” challenges in the analysis of this data. This study aims to under-

stand if and how experts can be supported effectively through intelligent tools in the task of eth-

nopharmacological literature research. To this end, we utilize a real case study of ethnopharmacol-

ogy research, aimed at the Southern Balkans and Coastal zone of Asia Minor. Thus, we propose a 

methodology for more efficient research in ethnopharmacology. Our work follows an “Expert-Ap-

prentice” paradigm in an automatic URL extraction process, through crawling, where the appren-

tice is a Machine Learning (ML) algorithm, utilizing a combination of Active Learning (AL) and 

Reinforcement Learning (RL), and the Expert is the human researcher. ML-powered research im-

proved 3.1 times the effectiveness and 5.14 times the efficiency of the domain expert, fetching a total 

number of 420 relevant ethnopharmacological documents in only 7 hours versus an estimated 36-

hour human-expert effort. Therefore, utilizing Artificial Intelligence (AI) tools to support the re-

searcher can boost the efficiency and effectiveness of the identification and retrieval of appropriate 

documents. 

Keywords: Ethnopharmacology; Artificial Intelligence; Web Crawling; Active Learning; Reinforce-

ment Learning; Text Mining; Big Data 

 

1. Introduction 

Ethnopharmacology is an interdisciplinary field of research based both on anthropo-

logical and scientific approaches [1]. The development of a standard scientific approach 

to retrieve information from the empirical use and define a pharmacological value from 

traditional preparations must be considered a highly complex and challenging task, 

strongly filtered by the evolution of human history [2].  

In the Southern East European region, ethnobotanical studies are of great interest 

due to political and economic shifts that have influenced local lifeways, economies, food-

ways, and transmission of traditional knowledge regarding local health-related practices. 

[3].  
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The challenge of discovering and enriching a body of knowledge with pre-existing 

scientific research has been a persistent need of the scientific community. Nowadays, in-

telligent systems known as “focused crawlers” [4], have supported domain experts in per-

sonalized search. Such approaches combine the power of the search engines with user’s 

explicit feedback to identify the documents that maximally relate to the interest of the 

expert. The crawler leverages a limited set of keywords, provided by the users, to retrieve 

relevant documents. The experts, then, select the ones related to their interest and feed 

these back to the crawler. With subsequent iterations, the crawler can identify new key-

words and fetch more pertinent documents by improving its searches. 

Recent works employed data mining techniques to identify ethnopharmacology-re-

lated knowledge [5]. However, no work has yet provided personalized, adaptive, real-

time support to experts. The present study focuses on the classification of the ethnophar-

macological knowledge of Greece, southern Balkans, and the coastal zone of Asia Minor 

(Figure.1), with the broader aim to introduce a personalized computational approach to 

biomedical mining as an effective scientific tool for research in ethnopharmacology.  

 

Figure 1. The zone of ethnopharmacological interest in white. Southern Balkans and coastal zone of 

Asia Minor. 

This approach applies Machine Learning (ML) techniques, to get (a) automated in-

ference on the explicit and implicit interests of the expert, (b) optimization of the crawling 

process to minimize the feedback of the expert on the appropriateness of retrieved docu-

ments. Our major contribution is that we propose an intelligent search system that practi-

cally supports the ethnopharmacological research through focused crawling, using a com-

bination of Active Learning (AL) and Reinforcement Learning (RL). 

2. Materials and Methods 

2.1. Method Overview 

Our work follows an “Expert-Apprentice” paradigm. The Expert has his/her per-

sonal interests and understanding of which publications actually relate to these interests. 

The Apprentice supports the Expert, by learning the interests in two ways. First, the Ex-

pert explicitly provides examples of documents, called “seeds”. Second, over time the Ap-

prentice periodically requests feedback from the Expert for an – ideally minimal - number 

of candidate documents. The Expert then labels them as interesting or not. The Apprentice 

resumes its work iteratively until it retrieves a specific number of documents. 
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In our Artificial Intelligence (AI) setting, as shown in the Flow diagram (Figure 2), 

we propose the Apprentice be an ML algorithm that undertakes 2 tasks. In the first task, 

the algorithm understands the interests of the user (Expert) through explicit feedback (la-

bels of documents as interesting or not). Here, we utilize an ML model deploying pool-

based AL for a binary classification task, with the Expert being the Oracle (human anno-

tator) during the learning process. In the supervised pool-based AL setting, a model is 

trained on an initial small labeled training set of relevant and some irrelevant documents. 

Then, it queries the Oracle with the documents that are predicted to be the most informa-

tive for the model from a bigger unlabeled dataset, which is called “pool”. After the Oracle 

has given the corresponding labels for these samples, the training set is augmented with 

them and the model retrained utilizing the updated data. This training process resumes 

iteratively until a predefined number of queries (“budget”) has been addressed to the Or-

acle. We note that AL has already been used in other biomedical text mining applications 

[6,7], where classic ML classification algorithms, such as Support Vector Machine 

(SVM)[8] (a well-established classifier based on identifying representative instances that 

separate the classes of interest in a feature space), and Logistic Regression [9] (relying on 

a thresholded probability estimate mapping the input features of an instance to the prob-

ability of the instance to belong to each class) were examined. In our work, we utilize a 

common recurrent neural network, the Long-short term memory “LSTM” (a neural net-

work embedding sequences to a vector space, making sure that similar sequences are po-

sitioned close to each-other in the embedding space) as the classification model for the AL 

setting. 

In the second task, the Apprentice is an RL agent that discovers a strategy - policy - 

of crawling documents. The aim of the agent is to minimize the number of retrieved doc-

uments, while maximizing the number of relevant ones. To this end, the agent tries to 

connect the documents fetched so far with the decision of which candidate document to 

fetch next. We consider that we gather candidate documents from the references of each 

fetched publication. Every few fetched publications, the algorithm examines how well the 

strategy did in bringing relevant documents by using the trained AL model. The algo-

rithm then updates its strategy, based on this feedback, trying to improve its decisions in 

future crawling steps. Thus, we utilize RL in order to optimize the automatic URL extrac-

tion process of focused crawler. 

2.2. Defining the Relevant Topics 

The relevant topics of our publication search are defined by the Expert. In our case, 

the relevant topics referred to ethnopharmacology in Balkan countries and Asia Minor 

with emphasis on certain plant families and species. More specifically, our domain experts 

pointed out 31 of the most important plant families. Using the taxonomy of angiosperms 

published on Flora of Greece [10], we managed to extract all species names from these 

families. Thus, we constructed a taxonomy of 578 keywords based on geographical loca-

tions and plant families.  

2.3. Dataset 

In the selected ethnopharmacology setting, we first examined whether two different 

researchers agree on the definition of relevance. This would imply that the topic of interest 

has been sufficiently described to gain common understanding between experts. To this 

end, we requested them to provide a list of 25 relevant documents – seeds [11] - identified 

by their URLs. Based on these seeds, we identified a total of 427 documents, which were 

extracted from the references of them.  

We also retrieved another 800 publications, with no prior knowledge of whether they 

would be related to the topic at hand. This was achieved by a crawling run, which ran-

domly followed references appearing in visited publications, through uniform sampling. 
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By removing duplicates, we ended up with a total of 1012 documents, in addition to the 

seeds. 

We arbitrarily selected a total of 50 documents, of which almost 50% were part of the 

seed set (very relevant). Then we asked independently the 2 domain experts to label the 

documents on a scale from 1 to 4 (1 = “highly related” and 4 = “irrelevant”). We then 

measured the degree of the inter-annotator agreement through three methods: Raw 

Agreement (RA) (counts the number of items for which the annotators provide identical 

labels), Cohen’s kappa (CK) (takes into account the possibility of the agreement occurring 

by chance), and Krippendorff’s alpha (KA) (measures the disagreement levels of annota-

tors utilizing a distance function for each pair of labels) [12]. All methods showed sub-

stantial or good agreement between judges (RA: 0.82, CK: 0.71, KA: 0.92). This clearly 

showed that the experts do hold a common understanding of what is related to the do-

main of focus. Thus, the senior of the two experts undertook that annotation of data in the 

next experiments. The rate of annotation across experts was about 5 documents per mi-

nute, described only by their titles and abstracts. Thus, the annotation of the total 1012 

documents by a single expert would have taken about 200 minutes. We note that this col-

lection of documents would be the pool for our pool-based AL setting. 

We now possess a means to obtain reference, agreed upon, opinions – referred to as 

“gold-standard” opinions on the relevance of a given document to our domain of interest. 

We can, thus, employ AL and crawling and evaluate how well the system (a) infers the 

interests of the expert(s) and (b) optimizes the crawling process to minimize the number 

of documents it needs to retrieve.  

2.4. Using Active Learning to Infer Expert Interest 

For the first aim, i.e., inferring what the expert considers related to the topic of inter-

est, we trained an LSTM [13] model with AL, which implements part of the “Expert-Ap-

prentice” workflow we described. Essentially, in our case, it refers to the algorithm which 

classifies a given document as relevant or not to the interest of the Expert. For this process, 

we set the budget of queries equal to 250, i.e., we can only ask the expert his/her opinion 

on a maximum of 250 documents. The document pool consists of the 1012 unlabeled doc-

uments collected using the random crawling run and those extracted from the seeds.  

For reproducibility purposes we briefly describe our LSTM network which takes as 

input a sequence of pre-trained word2vec word embeddings of each document, based on 

the bio.nlplab.org embedding [14]. The network uses a Mean Pooling layer to average the 

hidden state vectors of all timesteps, i.e., words in a document.1This layer is connected to 

two fully connected layers. The AL model selects from a pool those k documents for which 

the corresponding classification probabilities are the k smallest. In order our model to 

output probability values for each corresponding class, we use the Softmax as the activa-

tion function of the output layer. We arbitrarily use k = 10.  

Next, we tried to understand if the system would help the expert to retrieve a suffi-

cient number of related documents under a significantly reduced human time allocation. 

To this end, we ran 4-fold-cross-validation (4 experiments) [15]. In each AL experiment, 

the training set was initially composed of 23 relevant and 27 irrelevant documents, for a 

total of 50 documents. In each run, we kept 100 held-out documents, evaluating the per-

formance of the AL prediction: 50 were related and 50 were not related to the topic at 

hand. We essentially asked the expert about 250 documents (vs. 1012 that he would have 

needed to evaluate if no active learning was employed), reducing the required time and 

 
1 More information about the concepts of neural networks, activation functions, different types of layers and hyperparameters can be found in [40]  
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effort by approximately 75%. For this level of reduction, the AL model managed to classify 

correctly 88 out of 100 documents on average (88% accuracy). 

 

Figure 2. Flow diagram of the experimental method 

2.5. Reinforcement Learning 

In our setting, an RL algorithm allows the crawler to determine a strategy (policy), 

so that it retrieves a fixed number of documents while maximizing the number of related 

ones. Recently, there have been approaches of focused crawling [16] and biomedical data 

mining [17] with RL. An agent (the crawler) fetches URLs in an iterative manner. Each 

iteration is considered a timestep. The agent acts within a crawling environment. The en-

vironment has its state per timestep. There is a number of actions that the agent can take 

on each timestep. These actions lead to rewards over time. Formally, each timestep (t) the 

agent fetches a new URL, as a result of an action selection (At), then it transitions from the 

current state (St) to another state (St+1) and observes a reward (Rt). We consider the states 

to be related to the history of information (number of relevant and irrelevant URLs) 

fetched by the crawler. The actions are related to the URLs (keywords found on the anchor 

text) extracted from a state transition. The reward is related to the relevance of the current 

fetched publication with the defined topic. We set the reward equal to 1 for relevant pub-

lications and 0 otherwise. For the reward function, at first, we use the LSTM trained by 

AL in order to decide whether a document is related to ethnopharmacology. Then, we 

deterministically filter the related predicted ones by using the taxonomy of keywords con-

structed.  

The goal of the agent is to find a policy (utilizing an RL algorithm), to maximize the 

discounted cumulative received reward Gt = Rt + γRt+1 + γ2Rt+2 + ... + γΤ-tRT, [18] where T is 

the fixed number of total documents that the crawler should fetch and γ is the discount 

factor. In other words, the agent seeks to find a mapping between states and actions, in 

order to get high long-term rewards. For our experiment, we arbitrarily set T = 700 and γ 

= 0.99.  

Our evaluation measure for focused crawling is the harvest rate HR(t) [4], which is 

the cumulative percentage of relevant fetched documents up to timestep t. Formally, it is 

defined as 

𝑯𝑹(𝒕) =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑹𝒆𝒍𝒆𝒗𝒂𝒏𝒕 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒇𝒆𝒕𝒄𝒉𝒆𝒅 𝒔𝒊𝒏𝒄𝒆 𝒕

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒂𝒍𝒍 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒇𝒆𝒕𝒄𝒉𝒆𝒅 𝒔𝒊𝒏𝒄𝒆 𝒕
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 Since the RL agent is used to optimize the automatic URL extraction process and 

taking into account that the reward is 1 when the fetched webpage is relevant to our topic, 

harvest rate is also an evaluation measure for RL. It actually measures the mean cumula-

tive reward that agent receives during the whole learning (crawling) process. Thus opti-

mizing harvest rate is always equal to optimizing the mean cumulative reward of the RL 

agent. 

We employ a Deep Q-learning approach, utilizing the Deep Q-Network (DQN) agent 

[19], which is based on the TD Error [18], Rt+1 + maxaQπ' (St+1, a; θ-) - Qπ (St, At; θ), where Qπ 

and Qπ' are the action-value functions under the policies π and π', respectively. That is Qπ 

(St, At) = EU(D) [Rt+1 + maxaQπ'(St+1, a; θ-) | St, At]. Which reflects the expected cumulative 

(long-term) rewards given current state St, current action At and immediate reward Rt+1 

.The DQN agent consists of two neural networks with the same architecture - a Q-Net-

work (θ) and a Target Q-Network (θ-) - in order to approximate Qπ and Qπ', respectively. 

Additionally, it has a replay buffer D, called Experience Replay, which is important for 

uniform sampling mini-batches of uncorrelated past state transitions. For each Q-Net-

work, we utilize a Multilayer perceptron (MLP) with two hidden layers. We initialize the 

Experience Replay with a priori experience given from seeds, all of which are highly rel-

evant documents, in order to speed up the training process. Using Deep Q-learning, we 

essentially face a regression problem, minimizing the Mean Square Error of TD Error with 

respect to θ. Moreover, to balance the Exploration-Exploitation dilemma, calling us to de-

cide between always choosing the best action (exploiting) and uniformly selecting some-

times one (exploring), we use an ε-greedy policy for sampling, i.e., action selection. That 

is, the best action of a given state is chosen with probability 1-ε, otherwise a random one 

is selected (with probability ε). As training progresses, ε diminishes over time by a factor 

of λ until it reaches a defined value εF. Formally, ε = max {εF, λε}. We set λ = 0.99, initial 

ε0 = 0.15 and εF = 0.03.  

For our agent to be able to select URLs - related to actions - extracted from past state 

transitions, we use a priority queue, called the frontier, so that the best action is selected 

in O(log(N)); where N is the frontier size. We note that a URL is stored into the frontier 

along with its corresponding Q-value, which was estimated by the Q-Network. Also, we 

define another structure, called closure which represents a utility structure, essentially a 

map/dictionary (essentially a set of key-value pairs).  There we store fetched URLs, so 

that the agent will not fetch them again. 

Finally, we can describe the proposed focused crawling process that our agent fol-

lows. At this point, we consider that the AL process has been completed. Thus, we have a 

trained LSTM model for predicting whether a document (publication) is relevant to our 

topic of interest. Recall that the predictions of this model are first filtered, using a given 

taxonomy of keywords, in order to give the corresponding rewards that the agent receives 

during the whole crawling process. At first, user gives a few seed references (URLs), 

which are all highly relevant to the topic of interest, along with the taxonomy of keywords. 

These seeds are the starting point of the crawling process. As we mentioned above, the 

corresponding information from them is stored in the Experience Replay, before the 

crawling process starts. Also, the references extracted from the seed publications are 

stored in frontier with an initial Q-value, while the seed URLs are saved in closure. Recall 

that we use the closure structure in order not to fetch a URL more than once. 

When the crawling process has started, at each timestep the DQN agent, given its 

state, samples an action (related to a URL) from the frontier using the ε-greedy policy. 

After fetching the corresponding publication, its references are extracted and stored in 

frontier along with a corresponding Q-value computed by the agent. At the same time, 

the URL of the fetched publication is stored in closure. Selecting an action from frontier, 

the agent then receives a reward. Then, it transitions to another state, related to the current 

fetched publication and the history of publications fetched during the whole crawling 
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process. This state transition is then stored in the Experience Replay. Then, the agent 

learns from the past transitions, according to the Deep Q-learning algorithm. Note that 

this procedure is repeated iteratively, until a predefined number of publications is fetched 

by the focused crawler. 

We note that for the training of the above neural network, we use Adam optimizer 

with initial learning rate equal to 0.001. Also, for each training step, we sample from Ex-

perience Replay with constant batch size equal to 16. We set the target update period equal 

to 100, that is the weight values of the Q-Network are copied to the Target Q-Network 

after 100 (crawling) timesteps. Thus, during our total 700 crawling timesteps process, the 

Target Q-Network is updated 7 times. Moreover, in order to collect some more data, our 

agent starts learning after the 40 timesteps have passed. We note that for these 40 

timesteps, we perform only exploration utilizing random crawling, i.e. a URL is selected 

from the frontier with uniform sampling. 

Last but not least, at this point we will discuss some more implementation details. 

We developed our focused crawler system using Python 3 [20]. More specifically, we used 

Keras [21] and TensorFlow 2 [22] for building and training all neural networks described 

in Sections 2.4 and 2.5. Also, we built the crawling environment utilizing the open-source 

toolkit Gym [23]. We note that the whole crawling process was conducted using URLs 

from PubMed [24] and MEDLINE [25]. For this aim, in order to fetch webpages and access 

reference publication, we utilized the open-source tool PubMed_parser [26]. 

3. Results 

3.1. Ethnopharmacological Inference 

Ethnobotany in the Southern East (SE) European region includes local traditional 

knowledge from countries such as Albania [27], FYROM [28], Bulgaria [29], and Greece 

[30,31,32]. In the present study, the coastal zone of Asia Minor is included [33,34,35]. The 

conspicuous floristic affinities of the East Aegean islands with neighboring western Ana-

tolia, along with the enduring influence that Anatolian Turks had on eastern Europe dur-

ing the Ottoman empire, prompted us to compare data of ethnopharmacological studies 

from this area. 

The Balkan area can be described both as a “linking bridge” of cultures and as a 

violent transitional zone between civilizations; the bio-cultural-historical amalgam of 

races in the southern part of the peninsula represents the core of “Balkanization” [36], a 

concept coined to define the anthropological mixture in SE. 

Moving towards the southern parts of the peninsula, a unique cultural and linguistic 

pattern has evolved with populations influenced by the dominance of ancient Macedoni-

ans (500-168 BC), Romans (168-284 BC), Byzantines (395-1453 AD), and Ottomans (1299-

1922 AD). From the beginning of the 19th century, the Balkans were transformed from 

protectorates of foreign empires to independent countries, but the cultural amalgam was 

so intertwined that was embodied by the borders of these nation-states even after many 

generations. Even if hundreds of different ethnic groups exist in these countries, they are 

incorporated into the local societies in such a way that it is very difficult to investigate 

their origin [37]. In many instances, researchers described an erosion of traditional medi-

cal knowledge due to deep social changes [3]. As a result, the loss of information is inevi-

table.  

Moreover, rich biodiversity characterizes these regions and a great number of species 

have been used in traditional medicine. A non-exhaustive list of species in the earliest 

written records still preserved has been exploited by local healthcare [38]. 
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Lately, many online resources are trying to pass on this knowledge, mostly account-

ing for oral reports from elderly people. These attempts create a conspicuous variety of 

sources that needs new technologies to be processed [39], classified and validated, for the 

best advantage of the scientific community. In our project, we were faced with this great 

challenge. The volume of sources that needed to be monitored exceeded a database of 

10,000 identified references, based on the topics summarized in Table 1. We limited the 

Plant Families in the classification of Angiosperms and from these we considered 31 of 

the most important plant families used in ethnopharmacology. Furthermore, the part of 

the plant used, uses and recipes, Medical Subject Headings (MeSH) terms, and geograph-

ical regions, were used to filter the identified references. 

 

3.2. Crawling Results 

In a baseline setting, automatic crawling would just exhaustively return the refer-

ences of the seeds, and then recursively the references of these references. This causes a 

significant growth in the number of fetched documents, without ascertaining quality re-

sults. A human, on the other hand, would follow a much more targeted approach, by 

evaluating the most promising documents each time, visiting them, and in turn, judging 

their references. In the RL setting, the agent may determine that in some cases it is prom-

ising to follow a marginally relevant reference, to then reach a wealth of other publications 

that might have not been fetched with the previous method.  

In this case, we measure the reduction in crawled publications, compared to the base-

line. We also take into account how many documents retrieved were indeed relevant to 

our topic. We note that in the baseline approach: 

- in the first 25 documents, we have approximately 850 references to visit; 

- in the first 700 fetched documents, the identified references are approximately 10,000. 

We have estimated, by sampling 50 representative documents, that the percentage 

of related references per document is approximately 19%. On the other hand, our DQN 

agent fetched 700 documents, measuring the HR as 60% (420 relevant documents from 

700), i.e., improving 3.1 times the effectiveness over the baseline. Recall that this HR score 
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is also the mean cumulative reward the agent received during the whole crawling (learn-

ing) process. 

As a second aspect, we examined the same number (420) of related documents the 

expert can retrieve in the unit of time. Taking into account the time needed for the expert 

to annotate a single document, we estimate that they need a total time of 36 hours for this 

task, which is a rate of 13 relevant documents per hour. The RL-based system achieved a 

rate of 68 relevant documents per hour through a 7-hour crawling task, and thus im-

proved 5.14 times the efficiency over the expert. 

5. Conclusions 

In this study, we demonstrated a methodology utilizing AL and RL methods that can 

significantly boost the effectiveness and efficiency of ethnopharmacology researchers. 

Moreover, we demonstrated that AI-powered research can improve 3.1 times the effec-

tiveness and 5.14 times the efficiency of the domain expert, suggesting the use of such 

tools for ethnopharmacology research. After this preliminary study, we can safely hypoth-

esize that the use of AI tools can indeed support the researchers to boost the efficiency and 

effectiveness of the identification and retrieval of appropriate documents. For future 

work, we plan to develop a streamlined end-to-end software system, combining the de-

veloped (back-end) methodology with an intuitive (front-end) user experience, practically 

supporting ethnopharmacological research workflows. The contribution of this system to 

everyday practice would be the significant reduction of time and effort allocated to the 

identification and collection of documents relevant to a researcher's focus. 
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