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Abstract

Let us assume that defence mechanisms are so strong that the average outcome of a hacking attack is unsuccessful.
How to calculate the costs arising from false positives and false negatives in intruder detection? Is it better for the
hacker to make fewer but more effective attacks rather than several but less effective attacks? How to calculate the

difference between these alternative strategies?
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1. Background

Markov Decision Process (MDPs) is stochastic control
processes that are discrete in nature. These processes
are extensively discussed first Bellman [1] and Howard
[2]. They are very much used in modeling various
optimization problems as they give a nice general
framework to model the decision process particularly
where there might be several random outcomes that
can be controlled partly by the decision maker. One of
those problems is security intrusion processes that are
based on hacker decisions. Intrusion is growing
concern today because of the apparent weakness of
various information databases and systems due to
attack by hackers which poses a major security threat.
There has been much research in developing and
designing fault-tolerant architectures which can
prevent such intrusions [3]. The first major work on
using statistical techniques to model this dates back to
1980 by Anderson who proposed for such a statistical
intrusion detection system [4] and the statistical
intrusion detection model proposed by Dening using n-
gram and Markov chain data models [5]. Researchers
are also using various other statistical machine learning
processes such as by Markov chains [6,7,8], hidden
Markov models [9]. In Recent days researchers are also
starting to use models based on artificial immune
systems( Machine Learning instance or Rule Based
systems that are based and inspired by biological
immune systems of vertebrates) [10,11,12,13].

As the other machine learning models MDPs are also
widely used to make stochastic models to understand
the intrusion processes [14,15,16,17]. These models
assume that the state transition probabilities & costs
and other such model parameters that are taken during
each decision stage shall be controlled by the decision
maker explicitly. The performances of such intrusion
systems based upon MDPs are dependent on the rule
which describes how the appropriate control actions
are taken and implemented. The MDPs are able to
apprehend the security reinstatement after doing a reset
action like server rotation initiating [18] or recovery

sequence [19] etc or by apprehending the possible
temporarily interrupting of a task being carried out of a
intrusion from a defend action like to kill a process that
is vital and critical for the intrusion to continue[20]. In
the next section we shall discuss the Markov Decision
Process.

2. Introduction

Let us assume, that there are two kinds of
connections: user connections arriving with the rate 4,
and finishing with the rate 1, ; and hacker connections
arriving and finishing with the rates A, and g,
respectively. Let us make a discrete time stochastic
process and let n denote the discrete time parameter.
Accepting a hacker results to expenses: let the cost of
accepting one hacker be @y . Detecting hackers also
leads to expenses, as the security breach must be
analysed. Let wp be the cost of analysing one hacker
connection. Finally, rejecting a user connection also
results to expenses as a loss of income or value of the
connection. Let this cost be wg .

The goal is obtaining a formula for the variance of
the cost, a scalar variable for cost describing the sum of
all expenses, as is customary in the Markov Decision
Theory, is not sufficient. Instead, in this modelling
method the cost variable r appears as a state variable
and the state of the system is a triplet (n,q,r). The
probability of (n,q,r) is denoted by s, and the

probabilities of a false positive and a false negative are
denoted by pgp and pgy respectively.

2. Markov Decision Process (MDP) model

Let the total time in the model be finite, and let the
finishing time T be divided into time slots of the size
T /N, thus, the model has discrete time and let n be
the time parameter. The possible transitions from
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(n,q,r) with their probabilities in a time unit are

described as follows: (a check for free capacity is done
before a check for a hacker)
- a hacker is accepted:

(n,q,r) > (n+1,q+ey,r+wy) with probability

I
W]-UGRq AnPEN 1)

- a user is accepted: (n,q,r) > (n+1,q+ey,r) with
.
probability WllJeRq Ay(L=Pep).

- a hacker is noticed and rejected:

(n,q,r) > (n+1,9,r + wa) with probability

T

W:LUGRQ A= Pen).
- a user is taken for a hacker and rejected:

(n,q,r) > (n+1,q,r +wg +wp) With probability

WlueRq AuPEps

- the state does not change: (n,q,r) — (n+1q,r) with
probability

1—— Ay +Lyerg An + Z,ujqj ,
jefu,h}
- congestion, a user is rejected:
(n,q,r) > (n+1,q,r + wg) with probability

T
W(l_lueRq )lu '
- a user finishes: (n,q,r)—>(n+1q—e,,r) with
probability % Ly
- a hacker finishes: (n,q,r) > (n+1q—eq,r) with
probability % L
The backward transition probabilities
ph+1,qj-,rJ
(ngr) — (n+Lqjry) 2)
sum to one: 1=zp;‘+lqu . Notice, that there is no

backward equation, that is
Sn,a,r * Z p;1+1,quj Sn+Lqjrj - (3)

An equation can be expressed only with forward
transition probabilities from (n-1,q',r") to (n,q,r)as

a forward equation Sp.1q,= an‘quj Sn.qjrj -
Then 1= Z P,gjrj - The forward transition equation

is obtained by inverting the backward transitions:

Sn+L,qr = Snar ~ | Au +1uaR Ay + Z,UJQJ Snq,r

jefu,h}
T 1
+ N U£Rg AuSn,q.r-op
T
+ N]-UGRq_eu Au(= PEp)Sng-ey r (4)

T T
+ W:LUGRq AuPEPShq r—ag-op + WlueRq A (1= penN )Sn,q,r—wA

T
+W1UERq,eh A PENSH,g-ep,r—on + ZﬂJ(QJ +1sp, grej.r
Je{u h}

Let us define:
A =2@=Prp), A =nPEn, &y =0, on=ay.
Then A,ppp =4y -4, and An(1-pen) =4 —4p.
Inserting to (4) gives

Z“Jqlsn ar =

Jeuh

Sn+1,q,r =Sn,qr ~ (/1u +/1u)5n,q,r

T .
+W(/1u _/Iu)sn,q,rfwgfa)A ®)

T , T ,
+ﬁ(/lh —An)Sn,qr-mp "‘W/Iusn,q—eu,r—a)u

T

+Wﬂ~ﬁsn,q7eh,r7wh Z;uj(qj +1)sp, g+ej.r -

N oh)

We can derive the following result for n —t , where t
is a continuous time parameter. These results assume
that in the initial state at t =0 the state probabilities (

are in a stationary state and the total cost is zero.

Theorem 1. Let us assume the attacker is using one
effective attack causing cost wp if the attack goes

unnoticed. The probability of the state  with cost I at
the time t is

St,q,r — Ae_t(ﬂ‘u +/1h)+tj‘u (1_pFP) _I(_JJ
i {u h}ql' Hi
0 3
) H tak (6)
h=l2=i 3 =0 k=1
r=wHOh+ Zﬂkjk
k=1
where
a1 =AnPEN, @2 = Ay PFp, a3 = An(1— PEN)
Pr=oy, fo=op+awg, f3=wp,
Ay =A@ =pep), and A = A, Pen -

Let us assume the attacker is using K less effective
attacks, each causing cost @, K ~'if the attack goes
unnoticed and each having the arrival rate A,. The
corresponding probability is
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~tE((Au,i +4,i)+0 i (- PFP)) PRI
Stqr = Ae ! H H - [ “J
jewnyicr iU A
© 3
HH ( thI Jkl] (7)
ii=i2,i=i3i=0 k=1 iel

3
H=20H ithit X Akilk,i
i k=1
where

aiji = niPEN» @2,i = Ay,i PEP
azi =/n,il=PeN)

1
Bri = @n i :Ele,ﬁz,i =wop+og, f3i=0p,

Ahi = Au,il=pep),and Ap i =2 i PEN -

Proof: If a solution satisfying the recursion equation
and the initial values is found it is the solution because
recursion equations have a unique solution from given
initial values. We select trial values and then check that
the state equation obtained by summing over I isina
stationary state and that the cost is zero in the initial
state. Let us look for a solution of the form

\dj
1(4j
Sna.r = H _[_ Snr- ¥ }quJ =SgSn,r—c>

je{u,h}qj! Hj jeluh
where ¢ = Za)jqj . (8)
jelu,h}
This solution form satisfies
HiQjSn,q,r zﬂjsn,q—ej,r—mj and 9)

uij(aj +1)Sn,q+ej|r :lﬁsn,q,rfwj for jeuh}.

Let us notice, that (9) means that the state equation is
in steady state, i.e. summing over I we have the
detailed balance equations in this case. Inserting this
attempt yields an equation where ( appears as a

parameter and we can divide both sides by Sq- The
remaining equation is (20)

Zﬁsnr(:w_ Z/lsnrc

jeuh jEUh

T ’ /
+ﬁ(lu —A)Sn,r—c—wg —wa +W(ﬂh —n)Snr—c—wp
This is easily solved with the generating function

Gn(v) =D SnqrV" =S¢ Snr-cV" (11)
r=0 r=0

where s =0 if r<0. Thus

T T r
Gpag (V) =Gn(v)(1—ﬁz/1j +W21jv“’1
i j

Sn+1,r—c =Sn,r— cJr

b Oy = VRSB Oy = WOR). (12)

Let us write the equation as

Gp1(v) =G (v)[1+—ng(v)J (13)
kel
Then by assigning t/n=T/N and letting N — «©
n
Gy(v) = Go(v) lim [1+ ng(v)] (14)
kel
t 2ok (v)

=Gg(V) lim H(H - gk(v)] =Gg(v)e kel

The term Gg(v) can be taken as a constant. There are
only three g, (v), which depend on v :

9o(v) = —(4y +4n) (15)
91(v) = AV = 2,0~ pep)V° = 2, (1- Prp)

92(v) = aqv?L = ApvN = 2, pepv®H

93(v) = apvP2 = (A — A WVOATB = 3 pppv@ATOB

94(v) = agv/® = (4 = VA = 2 (L- ppn V7A
Thus
3

t Yok Vﬂk
G, (v) = Gy et (Autn)+HAu(1-PFP) o k=1 (16)
_ Goe™ 1A+ 2n)+1u 1= pFP) (takvﬂk)
g szo J

Let us pick up the coefficient of v"
Str = (7)

5 e

1= 12 j3=0k=1

Goe*t(/lu +2n)+ty (1-pFp)

r= Zﬁ’klk
k=1
and thus
' \9j
Ay +An)+y (- PEP) 1[4
Siqr = Ae 11 — =
jeun} 9=\ 4
) 3
1 .
2 H[.—,(tak)‘k) (18)
jl=]2=i3=g k=1 \ Jk*
r=aydu+onth+ XAk Jk
k=1

The solution starts from an initial value t=0 where
the Markov chain for state probabilities (obtained by
summing (4) over r) is in a stationary state and the
total cost in the process is zero. Formula (18) has
summation over a set of partitions, but a good
approximation is not very difficult to evaluate: the term
Jk! makes all but small values of j, insignificantly

small. The cost grows as

Pa() =D ISt - (19)
r=0
We have derived (6). Let us now consider the effect of
using one strong attack or many smaller attacks. The
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average cost is not affected but the cost distribution is
changed. The numbers

o8]
Stqr: 120 (Sng=2 Snqr)  (20)
r=0
give the cost distribution. If we use several small
attacks, the analysis proceeds in the same way as
above, with the exception that there will be for each

attack ie | terms g, ; (V) as above. Then (21)

=2 ((Ay,i+n,i)+tAu,i 1-PFP)) 1 (A Qj,i

Stqr =Ae i i s T

q.r 7

jelwn)icr  diit\UAji

0 3

HH[ thu Jk,i]-

k,i

ni=i2,i=13i=0 =1 iel ,i-

3
=X (@y,idu,i+eh,iah,i)+ X Bk,ilk,i
I

We obtained the expression (7).
Formulas (6) and (7) are rather complicated. The
following theorem allows easier comparison.

Theorem 2. Let us assume the attacker is using one
effective attack causing cost ey if the attack goes

unnoticed and the hacker connections have the arrival
rate A;, . The probability of the state q with cost r at

the time t

S ZB i OACH) . (22

h=l2= J3—0
r=oy %*’Zﬂk Ik

k=1
Let us assume the attacker is using K less effective

attacks, each causing cost wn K Lif the attack goes
unnoticed and each having the arrival rate A, . The
state probability of a combined state is

StarK = Zst,q,r (23)

Jk,i=0

k= Z Ok ,i-kelu,h}
i—1

_ i+ , Oh o —(K-D)t4)
- D
1=I2=13=0
3 . K-l .
r=oHq0h+ X ﬁklk*T(wH Oh+i1)
k=1

Here

20\

C(t,q) = e " rAmlthl-pe) H 1A
=S IR

3
1. i
and B, ; & (t):H'_lt “a, .
=1 Jk-

The numbers A and A’ are chosen so that the total
probability is one.

Proof: Let us first establish a small result. We can
consider a single service system with arrival rate 2; as

a multiservice system with K classes, each with
arrival rate 4 ; /K. The steady state probabilities must

be the same if we sum over all ways q; :qu’i .
i

Thus
q q
S o] -LA]
= 95t A q;!
5
4j=2 aji
i=Z 9
K K
1 1  qj
> =" (24)
izt e diit dj
5
4j=2q
i=x i

Let us mention that there is a purely combinatorial
proof of (22), i.e. without knowledge of the product
form solution [22] for a multiservice network. Let us
first notice that

R

holds for K >1. (23) resembles a bit Wandermolde
convolution but is quite simple. It follows easily by

q
expanding [1— ﬁ) as a binomial series

SSiIN (

and by changing the summation from q to n>q. (24)
follows from (25) by writing

i A R T R LT e O L P
o\dik NG —Ajk qj

aj,K

i n K-1 K-1 (n— qJ K)I _ n qu
qj K=0 dik i=1 i=1 4j
b K-1 aji!(n—-ajk - qu')

=Y qj
i=1 I
i n! K-t (n- qJK)‘ n! K i
e UE TS TR qj!(n—qj)!

I
L
o
,:
:x
_Q
R
LS
L

-

a

.

I MRl
a

K K ol ol _
- 2 11 AT

= BCTICRET
;1 Ilq“(n qul) : :

:K“[;] 27)
]
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and multiplying both sides by (n—q;)!/n!.

Let us now compare the case when there is one
strong attack with cost wy , or K smaller (identical)
attacks with @y ; = wy /K. Let the combined arrival

rate of the smaller attacks be K times large. This is
obtained by setting A, ; = 4. The user traffic is not

affected, but it is also divided to K types in (21). In
order to keep the total arrival rate constant, let us set
Aui = Ay /K. Service times and detection probabilities

are not changed: j; =i, Pen,i = Pen. J € u.h},
i=1.., K. Let us sum over all combinations of q; ;
giving
K
q; :ZQj,i . jefuh} (28)
i=1
in order to combine the results. The summation is

complicated and we will do it in small parts. From (24)
follows

2

jeluh}

K

I Hi[i—] )

jeluh) izt 937 LA

~LPM~

aji=24dj,i
J i J

SR ESCAN I ENEA)

lzKl i=1 qu| Hyi |:K1 i=1 qj| :uh,|
= Uni=p. i
» \du , \h 1\9]
:Kqui[ﬂu] thi[th ke T A
Ayt Key An!\ #n je{u,h}qj! Hj

Let us simplify the term

Qi+ i)Y Ay i (- Pepi)
e i

The coefficients in the case of many small attacks are
a1j = AniPENi = AhPEN = a1, (32)

— e*( K-Dt4, e*t(iu +4n)+t2y (1-Pep)

1 1
Qi = A,iPEp;i =E1u Prp = 22

azi=ni(1-Pen,i) = a3,
1
= ) P = — ) = — ,
Pri = On i OH Kﬁl
Pori=op+wg =p,and B3i=wp=Pf3.
Next Iet us calculate

K . .
HH th. :{Hﬁtn,ialn,i J (33).
| i=1 W

k1|—1

K
> i2i K K
(%ji:l Hjl (121 21 (H 1 i ; J
2,i°

i=1 i=1 J3I

Let us sum

3 © 3 K 1 S
Z- Z HH-_-!th,laka,l (34)

k=2 Jk,i
I=
3 2 0 K . .
1 1 ki ki
ST E (g
k=1 jka=-=jk k=0l i=1 K’
K
k=2 Ik,
i=1

3 3
i i Lo i i 1
— 12 Jk = tJk ,Jk —kJ1t13 — tlk , Jk
K | | K jk!t a K | | J_k!t a
k=1 k=1

We have already summed the terms over i and in the
summation index for r in the case of small attacks we
can take any index I, for instance i =1, since all small
attacks are identical. We get

3
r=m,19y +@n10n +2:Bk,1jk 35)
k=1

K
1 1-K ). .

=wyqy +—wplq +[_)Ji + z P Jk -
K K i—1

Combining all parts we get the final result: For one
strong attack with the cost wy for one attack if an

attacker gets in and the arrival rate Ay, the state
probability is

o0
Stq.r = D Biy.ip. s DAC(L,q) . (36)
jl=]2=j3=g
r=oyqy +ohdh +k21ﬂk Ik
For K small identical small attacks with the cost
oy /K for one attack if an attacker gets in, and with
the combined arrival rate K4y, , the state probability of
a combined state is

o0
Sta.r K = zst,q,r = (37)

Jk,i=0

k= Z Ok, kefuh}
i=1
Z K 1t13 Bj1,j2,j3 (HAC(t,q)K h g —(K-Dt2n
=J2=j3=0
3 . K4 )
r:%Qqu%CIthkZlﬁka*T(wH Oh+J1)

Here
jelon 40t LA
and Bj, j, js (1) = H—t”‘ (38)

kl

The numbers A and A’ are chosen so that the total
probability is one. Let us mention that the solution is
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not unique, by selecting different initial values the
solution takes different forms, but the selected initial
values lead into relatively easy closed form formulas.
This finishes the proof of Theorem 2.

3. Conclusion

We derived expressions (6) and (7) from which the
cost distribution can be calculated and simplified the
result into (22), (23). Formulas (22) and (23) are still
complicated, but let us look at the range of the index r
in (22). It takes higher values in (22) than in (23). This
shows that using many small attacks decreases
variance even though the average effect is the same.
The morale is the same as in [1], you should gamble
with high bets if chances of winning are small, but the
example in this paper is more difficult than those in
[21]. Expressions for risks in this kind of a gamble
remain complicated, but can be derived. For other
applications of MDP models in telecommunications,
see [23]. MDP models have also been used in intruder
detection previously, e.g. in [24].
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