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Abstract  

 Let us assume that defence mechanisms are so strong that the average outcome of a hacking attack is unsuccessful. 

How to calculate the costs arising from false positives and false negatives in intruder detection? Is it better for the 

hacker to make fewer but more effective attacks rather than several but less effective attacks? How to calculate the 

difference between these alternative strategies?  
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1. Background 

Markov Decision Process (MDPs) is stochastic control 

processes that are discrete in nature. These processes 

are extensively discussed first Bellman [1] and Howard 

[2]. They are very much used in modeling various 

optimization problems as they give a nice general 

framework to model the decision process particularly 

where there might be several random outcomes that 

can be controlled partly by the decision maker. One of 

those problems is security intrusion processes that are 

based on hacker decisions. Intrusion is growing 

concern today because of the apparent weakness of 

various information databases and systems due to 

attack by hackers which poses a major security threat. 

There has been much research in developing and 

designing fault-tolerant architectures which can 

prevent such intrusions [3]. The first major work on 

using statistical techniques to model this dates back to 

1980 by Anderson who proposed for such a statistical 

intrusion detection system [4] and the statistical 

intrusion detection model proposed by Dening using n-

gram and Markov chain data models [5]. Researchers 

are also using various other statistical machine learning 

processes such as by Markov chains [6,7,8], hidden 

Markov models [9]. In Recent days researchers are also 

starting to use models based on artificial immune 

systems( Machine Learning instance or Rule Based 

systems that are based and inspired by  biological 

immune systems of vertebrates) [10,11,12,13].  

As the other machine learning models MDPs are also 

widely used to make stochastic models to understand 

the intrusion processes [14,15,16,17]. These models 

assume that the state transition probabilities & costs 

and other such model parameters that are taken during 

each decision stage shall be controlled by the decision 

maker explicitly. The performances of such intrusion 

systems based upon MDPs are dependent on the rule 

which describes how the appropriate control actions 

are taken and implemented. The MDPs are able to 

apprehend the security reinstatement after doing a reset 

action like server rotation initiating [18] or recovery 

sequence [19] etc or by apprehending the possible 

temporarily interrupting of a task being carried out of a 

intrusion from a defend action like to kill a process that 

is vital and critical for the intrusion to continue[20]. In 

the next section we shall discuss the Markov Decision 

Process. 

2. Introduction 

 

Let us assume, that there are two kinds of 

connections: user connections arriving with the rate u  

and finishing with the rate u ; and hacker connections 

arriving and finishing with the rates h  and h , 

respectively. Let us make a discrete time stochastic 

process and let n  denote the discrete time parameter. 

Accepting a hacker results to expenses: let the cost of 

accepting one hacker be H . Detecting hackers also 

leads to expenses, as the security breach must be 

analysed. Let A  be the cost of analysing one hacker 

connection. Finally, rejecting a user connection also 

results to expenses as a loss of income or value of the 

connection. Let this cost be B . 

The goal is obtaining a formula for the variance of 

the cost, a scalar variable for cost describing the sum of 

all expenses, as is customary in the Markov Decision 

Theory, is not sufficient. Instead, in this modelling 

method the cost variable r  appears as a state variable 

and the state of the system is a triplet ),,( rqn . The 

probability of ),,( rqn  is denoted by rqns ,,  and the 

probabilities of a false positive and a false negative are 

denoted by FPp  and FNp  respectively. 

 

2. Markov Decision Process (MDP) model 

 

Let the total time in the model be finite, and let the 

finishing time T  be divided into time slots of the size 

NT / , thus, the model has discrete time and let n  be 

the time parameter. The possible transitions from 
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),,( rqn with their probabilities in a time unit are 

described as follows: (a check for free capacity is done 

before a check for a hacker) 

- a hacker is accepted: 

 ),,1(),,( Hh reqnrqn +++→  with probability 

         FNhqRu p
N

T
1 , (1) 

- a user is accepted: ),,1(),,( reqnrqn u++→  with  

probability )1(1 FPuqRu p
N

T
−  ,  

- a hacker is noticed and rejected:  

),,1(),,( Arqnrqn ++→  with probability 

 )1(1 FNhqRu p
N

T
−  , 

- a user is taken for a hacker and rejected: 

),,1(),,( ABrqnrqn  +++→  with probability 

FPuqRu p
N

T
1 , 

- the state does not change: ),,1(),,( rqnrqn +→  with     

probability  

  












++− 





huj

jjhqRuu q
N

T

,

11  , 

- congestion, a user is rejected:  

),,1(),,( Brqnrqn ++→  with probability 

 uqRu
N

T
)11( − ,  

- a user finishes: ),,1(),,( reqnrqn u−+→  with 

probability uuq
N

T
 ,  

- a hacker finishes: ),,1(),,( reqnrqn h−+→  with 

probability hhq
N

T
 . 

The backward transition probabilities  

 ),,1(),,(

,,1

jj

jrjqnp

rqnrqn +→

+

  (2) 

sum to one:  +=
jrjqnp ,11 . Notice, that there is no 

backward equation, that is 

  ++
jrjqnjrjqnrqn sps ,1,1,, .  (3)  

An equation can be expressed only with forward 

transition probabilities from ),,1( rqn −  to ),,( rqn as 

a forward equation =+ jrjqnjrjqnrqn sps ,,,,1 . 

Then  jrjqnp ,1 . The forward transition equation 

is obtained by inverting the backward transitions: 

 
rqn

huj

jjuqRuurqnrqn sq
N

T
ss ,,

,

,,,,1 1













++−= 



+ 

BrqnuqRu s
N

T
 −+ ,,1

rueqnFPu
ueqRu sp

N

T
,,)1(1 −− −+   (4)  

ArqnFNhqRuABrqnFPuqRu sp
N

T
sp

N

T
  −−− −++ ,,,, )1(11

 

 



+−−− +++

huj

rjeqnjjHrheqnFNh
heqRu sq

N

T
sp

N

T

,

,,,, )1(1  
 . 

Let us define:  

)1( FPuu p−=  , FNhh p = , 0=u , Hh  = . 

Then uuFPu p  −=  and hhFNh p  −=− )1( . 

Inserting to (4) gives 

 

( ) rqnuu

huj

rqnjjrqnrqn s
N

T
sq

N

T
ss ,,

,

,,,,,,1  +−−= 


+

ABrqnuu s
N

T
 −−−+ ,,)(  (5) 

urueqnuArqnhh s
N

T
s

N

T
  −−− +−+ ,,,,)(  

 

 



+−− +++

huj

rjeqnjjhrheqnh sq
N

T
s

N

T

,

,,,, )1(   . 

We can derive the following result for tn→ , where t  

is a continuous time parameter. These results assume 

that in the initial state at 0=t  the state probabilities q  

are in a stationary state and the total cost is zero.  

 

Theorem 1.  Let us assume the attacker is using one 

effective attack causing cost H  if the attack goes 

unnoticed. The probability of the state q with cost r at 

the time t  is 

 

jq

j

j

huj j

FPputhut
rqt

q
Aes













 
= 



−++−





,

)1()(
,,

!

1
  

( ) 



=

+=

=== =










3

1

0321

3

1 !

1

k
kjkhqHr

jjj k

kj
k

k

t
j



  (6) 

where

  

FNh p =1 , FPu p =2 , )1(3 FNh p−=  ,

H =1 , BA  +=2 , A =3 ,  

)1( FPuu p−=  , and FNhh p = .  

 

Let us assume the attacker is using K  less effective 

attacks, each causing cost 
1−KH if the attack goes 

unnoticed and each having the arrival rate h . The 

corresponding probability is 
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 
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

3
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where 

 

FNihi p,,1  = , FPiui p,,2  =

)1(,,3 FNihi p−=  , 

1,,1
1

HiHi
K
 == , BAi  +=,2 , Ai  =,3 , 

)1(,, FPiuiu p−=  , and FNihih p,,  = .  

 

Proof: If a solution satisfying the recursion equation 

and the initial values is found it is the solution because 

recursion equations have a unique solution from given 

initial values. We select trial values and then check that 

the state equation obtained by summing over r  is in a 

stationary state and that the cost is zero in the initial 

state. Let us look for a solution of the form 

   
crnq

huj
jqjrn

jq

j

j

huj j
rqn sss

q
s −



−



=












 
=  ,

,

,

,

,,
!

1





,  

where 

 



=

huj

jjqc

,

 . (8) 

This solution form satisfies 

 
jrjeqnjrqnjj ssq  −−= ,,,, and (9) 

jrqnjrjeqnjj ssq  −+ =+ ,,,,)1(  for  huj , . 

Let us notice, that (9) means that the state equation is 

in steady state, i.e. summing over r  we have the 

detailed balance equations in this case. Inserting this 

attempt yields an equation where q  appears as a 

parameter and we can divide both sides by qs . The 

remaining equation is  (10) 

   



−



−−−−+ −+=

huj

crnj

huj
jcrnjcrncrn s

N

T
s

N

T
ss

,

,

,

,,,1  

AcrnhhABcrnuu s
N

T
s

N

T
  −−−−− −+−+ ,, )()( . 

This is easily solved with the generating function 




=

−



=

==

0

,

0

,,)(

r

r
crn

r

q
r

rqnn vssvsvG ,  (11) 

where 0,, =rqns  if 0r . Thus 

  +−=+

j j

j
jjnn v

N

T

N

T
vGvG


1)(()(1

A
hh

BA
uu v

N

T
v

N

T   )()( −+−+
+ ). (12) 

Let us write the equation as 














+= 



+

Ik

knn vg
N

T
vGvG )(1)()(1 . (13) 

Then by assigning NTnt // =  and letting →N  

n
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k
n
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n
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

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The term )(0 vG  can be taken as a constant. There are 

only three )(vgk , which depend on v : 

)()(0 huvg  +−=
 (15)
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Let us pick up the coefficient of rv : 

=rts ,   (17) 
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and thus 
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The solution starts from an initial value 0=t  where 

the Markov chain for state probabilities (obtained by 

summing (4) over r ) is in a stationary state and the 

total cost in the process is zero. Formula (18) has 

summation over a set of partitions, but a good 

approximation is not very difficult to evaluate: the term 

!kj  makes all but small values of kj  insignificantly 

small. The cost grows as  

 


=

=

0

,,)(

r

rqtq rstp . (19) 

We have derived (6). Let us now consider the effect of 

using one strong attack or many smaller attacks. The 
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average cost is not affected but the cost distribution is 

changed. The numbers  

rqts ,, , 0r      ( 


=

=

0

,,,

r

rqnqn ss )  (20) 

give the cost distribution. If we use several small 

attacks, the analysis proceeds in the same way as 

above, with the exception that there will be for each 

attack Ii  terms )(, vg ik  as above. Then  (21) 
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We obtained the expression (7).  

Formulas (6) and (7) are rather complicated. The 

following theorem allows easier comparison. 

 

Theorem 2. Let us assume the attacker is using one 

effective attack causing cost H  if the attack goes 

unnoticed and the hacker connections have the arrival 

rate h . The probability of the state q with cost r at 

the time t   
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Let us assume the attacker is using K  less effective 

attacks, each causing cost 1−KH if the attack goes 

unnoticed and each having the arrival rate h . The 

state probability of a combined state is 
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The numbers A  and A  are chosen so that the total 

probability is one. 

 

Proof: Let us first establish a small result. We can 

consider a single service system with arrival rate j  as 

a multiservice system with K  classes, each with 

arrival rate Kij /, . The steady state probabilities must 

be the same if we sum over all ways =
i

ijj qq , . 
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Let us mention that there is a purely combinatorial 

proof of (22), i.e. without knowledge of the product 

form solution [22] for a multiservice network. Let us 

first notice that  
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holds for 1K . (23) resembles a bit Wandermolde 

convolution but is quite simple. It follows easily by 

expanding 
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and by changing the summation from q  to qn  . (24) 

follows from (25) by writing  
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and multiplying both sides by !/)!( nqn j− . 

 Let us now compare the case when there is one 

strong attack with cost H , or K  smaller (identical) 

attacks with KHiH /,  = . Let the combined arrival 

rate of the smaller attacks be K  times large. This is 

obtained by setting hih  =, . The user traffic is not 

affected, but it is also divided to K  types in (21). In 

order to keep the total arrival rate constant, let us set 

Kuiu /,  = . Service times and detection probabilities 

are not changed: jij  =, , FNiFN pp =, ,  huj , , 

Ki ,...,1= . Let us sum over all combinations of ijq ,  

giving  


=
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K

i

ijj qq

1

, ,  huj ,   (28) 

in order to combine the results. The summation is 

complicated and we will do it in small parts. From (24) 

follows 
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Let us simplify the term  
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The coefficients in the case of many small attacks are 

1,,,1  === FNhiFNihi pp , (32) 
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Next let us calculate 
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Let us sum 
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We have already summed the terms over i  and in the 

summation index for r  in the case of small attacks we 

can take any index i , for instance 1=i , since all small 

attacks are identical. We get  


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++=
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Combining all parts we get the final result: For one 

strong attack with the cost H  for one attack if an 

attacker gets in and the arrival rate h , the state 

probability is  
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For K  small identical small attacks with the cost 

KH /  for one attack if an attacker gets in, and with 

the combined arrival rate hK , the state probability of 

a combined state is 
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The numbers A  and A  are chosen so that the total 

probability is one. Let us mention that the solution is 
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not unique, by selecting different initial values the 

solution takes different forms, but the selected initial 

values lead into relatively easy closed form formulas. 

This finishes the proof of Theorem 2.  

 

 

3. Conclusion 

  

 We derived expressions (6) and (7) from which the 

cost distribution can be calculated and simplified the 

result into (22), (23). Formulas (22) and (23) are still 

complicated, but let us look at the range of the index r  

in (22). It takes higher values in (22) than in (23). This 

shows that using many small attacks decreases 

variance even though the average effect is the same. 

The morale is the same as in [1], you should gamble 

with high bets if chances of winning are small, but the 

example in this paper is more difficult than those in 

[21]. Expressions for risks in this kind of a gamble 

remain complicated, but can be derived. For other 

applications of MDP models in telecommunications, 

see [23]. MDP models have also been used in intruder 

detection previously, e.g. in [24]. 
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