Preprint
Article

On novel Copper Based Alloys Development via Friction Stir Alloying

Altmetrics

Downloads

226

Views

254

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 April 2021

Posted:

27 April 2021

You are already at the latest version

Alerts
Abstract
Friction stir alloying (FSA) of commercially pure Cu with Ni, Zn, and Mg is implemented in the current study. The successfully fabricated alloy structure has been scrutinized in terms of mechanical and micro-structural standpoints. Energy-dispersive X-ray spectroscopy revealed a uniform distribution of alloying elements and coalescence at the atomic level. The compositional and grain size heterogeneity is managed in the stir zone, which pave way for microstructural control using FSA. Thus, the present study carries significance for the development of novel materials whose fabrication requires temperature far below the melting point of base metals. Ultra-refinement of grains is found to accompany the alloying process, with ~ 440 nm being the smallest grain size. Maximum and average micro-hardness enhancement of 18.4 % and 6 % is observed for the fabricated alloy. Tensile properties have also been investigated and co-related with the micro-structural morphology. The shift towards grain bimodality has also been reported, which is a highly sought property in the present day, especially to overcome the strength-ductility trade-off.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated