Preprint
Article

Ambient Intelligence Based on IoT for Assisting People with Alzheimer’s Disease Through Context Histories

Altmetrics

Downloads

212

Views

293

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 April 2021

Posted:

04 May 2021

You are already at the latest version

Alerts
Abstract
The new Internet of Things (IoT) applications are enabling the development of projects that help monitoring people with different diseases in their daily lives. Alzheimer’s is a disease that affects neurological functions and needs support to maintain maximum independence and security of patients during this stage of life, as the cure and reversal of symptoms have not yet been discovered. The IoT-based monitoring system provides the caregivers’ support in monitoring people with Alzheimer’s Disease (AD). This paper presents an ontology-based computational model which receives physiological data from external IoT applications, allowing to identify of potentially dangerous behaviors for patients with AD. The main scientific contribution of this work is the specification of a model focusing on Alzheimer’s disease using the analysis of Context Histories and Context Prediction, which considering the state of the art, it is the only one that uses analysis of Context Histories to perform predictions. The research also proposes a simulator to generate activities of the daily life of patients allowing the creation of datasets. These datasets were used to evaluate the contributions of the model and were generated according to the standardization of the ontology. The simulator generated 1025 scenarios applied to guide the predictions, which achieved average accurary of 97.44%. The experiments also allowed the learning of 20 relevant lessons on technological, medical and methodological aspects of DCARE that are recorded in this article.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated