Of the manifold concepts in drug discovery and design, covalent drugs have re-emerged as one of the most promising over the past 20-or so years. All such drugs harness the ability of a covalent bond to drive an interaction between a target biomolecule, typically a protein, and a small molecule. Formation of a covalent bond necessarily prolongs target engagement, opening avenues to targeting shallower binding sites, protein complexes, and other difficult to drug manifolds, amongst other virtues. This opinion piece discusses frameworks around which to develop covalent drugs. Our argument, based on results from our research program on natural electrophile signaling, is that targeting specific residues innately involved in native signaling programs are ideally poised to be targeted by covalent drugs. We outline ways to identify electrophile-sensing residues, and discuss how studying ramifications of innate signaling by endogenous molecules can provide a means to predict drug mechanism and function and assess on- versus off-target behaviors.
Keywords:
Subject: Chemistry and Materials Science - Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.