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Abstract: The objective was to analyze the effects of adding anthocyanin delphinidin-3-O-sam-
bubioside and cyanidin-3-O-sambubioside of Hibiscus sabdariffa L. in animal diets. Scientific articles
published before 2021 in clinics, pharmacology, nutrition, and animal production were included.
The grains/concentrate, metabolic exigency, and caloric stress contribute to increasing the reactive
oxygen species (ROS); the excess of ROS unbalance the oxidants and antioxidants. Cyanidin-3-O-
sambubioside and delphinidin-3-O-sambubioside have antioxidant, antibacterial, antiviral, and an-
thelmintic activities. In the rumen, anthocyanin might show interactions and/or synergisms with
substrates, microorganisms, and enzymes which could reduce the fiber degradability, but increase
the potential methane (CHs) emissions; since anthocyanin interferes in the biohydrogenation of fats,
they increase the fat milk and meat quality. Anthocyanins reduce plasma oxidation and deposit in
tissues, increasing the milk and meat antioxidant activities. Cyanidin-3-O-sambubioside and del-
phinidin-3-O-sambubioside act as inhibitors of the angiotensin-converting enzyme (ACEi) and ren-
nin expression which may improve milk yield (there is not enough evidence in ruminants, though).
Polyphenols affect the reproductive potential. Sub products of HS contain as many amounts of pol-
yphenols as calyces, and their inclusion in diets would positively affect the average daily gain and
fat meat quality. Including HS in ruminant diets can improve the meat and milk quality.

Keywords: Hibiscus sabdariffa L.; agricultural wastes; anthocyanins; ruminant nutrition; milk and
meat production; fat milk and meat quality.

1. Introduction

Hibiscus sabdariffa L. (HS) is a typeHibiscus sabdariffa L. (HS) is a type of shrub of Mal-
vaceae family from India [1, 2], adapted to spring-summer and subtropical or tropical en-
vironments (Aw/As (Koppen climate classification)) [2-4]. In Mexico, HS production has
increased 10.54% from 2003 to 2018 [5, 6]. of shrub of Malvaceae family from India [1, 2],
adapted to spring-summer and subtropical or tropical environments (Aw/As (Kdppen
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climate classification)) [2-4]. In Mexico, HS production has increased 10.54% from 2003 to
2018 [5, 6].

According to FAO [7], the HS calyxes are one of the most demanded products by
industry to human feeding [8, 9]. Due to fatty acids HS contents and proportions [10, 11],
antioxidants [12-14] and antimicrobial (Gramm negative bacteria) [15], antiviral [16], and
anthelmintic properties [17], which might have improvements on human wealth [12, 18,
19].

Calyxes of HS contain 15.76-0.04% of a-linoleic fatty acid (n-3) [10, 11], and flavonoids
classified as anthocyanins [20]. Factors as the type of HS variety, crop management, pro-
cessing, storage, extraction of extracts, and cell contents affect the antioxidant contents
[21-23], however, the most proportion of HS flavonoids are the anthocyanins cyanidid-3-
O-sambubioside (25.9 to 46.2%) and delphinidin-3-O-sambubioside (48.4 to 59.2%) [13, 23-
25] whose clinic effects on humans are different from another kind of flavonoids supple-
ments as green tea (Camelia sinensis) which mainly contain epigalocathequin-3-gallate
(EGCG) and epicahequin-3-gallate [26].

Overall polyphenols and another kind of antioxidants as selenium and a-tocopherol
reduce the free radicals and chelate pro-oxidant metals [9, 14, 27-29], can affect the ruminal
digestibility and fermentation kinetics [30, 31], and in the animal productive behavior [32],
reducing the effects of the oxidative stress in ruminants [33-35] caused by the high grain
and concentrates proportions on diets [26, 36, 37], the metabolic exigency, and the heat
stress [37], and therefore improving the oxide-reductive potential of products derived to
human feed [38].

The objective of the present study was to make a critical review about the potential
clinic and productive effects of including HS anthocyanin: cyanidin-3-O-sambubiosid and
delphinidin-3-O-sambubiosid in ruminant diets.

2. Oxidative stress in ruminants

Inflammatory and environmental processes increase the endogenous ROS. Unbalance
between pro-oxidants and antioxidants might promote oxidative stress and molecular
damage [37].

In dairy cows and beef cattle, the environmental pollution and the high metabolic
exigency during pregnancy, milk production, negative energy balance, heat stress, respir-
atory diseases, inflammatory process, and parasites promote ROS releasing (O2, OH, RO,
RO, HO2, H202, HOC], Os, etc.), meanwhile the adipose mobilization increases the pro-
inflammatory cytokines [37]. Potential negative effects on animal wealth would worse in
the future because of the population increment and therefore the milk and meat demand
[27].

ROS contribute to inflammatory processes through the necroptosis activation (NF-«f3)
via phosphorylation interleukin (I-x{), and because of the production of pro-inflamma-
tory cytokines such tumoral factors (TNF-ar). In addition, protein carbonylation is medi-
ated by the ROS and metals (Fe?, Cu, etc.), producing oxidative by-products and ad-
vanced oxidative protein products (AOPP): 1) carbohydrates and lipids have reactive
compounds to carbonyl from glycoxidation and lipoperoxidation that might bond to pro-
tein residues; 2) oxidized proteins are degraded by proteases, but chemically modified
proteins (by di-tyrosine and disulfide cross linkages) might not be substrates to proteoly-
sis, contributing to deposits in tissues and organ damages [39-44].

High grain and concentrates proportion in ruminant diets increases the lipoperoxida-
tion, decreasing the a-tocopherol and the ferric reductive availability in blood plasma [22]
and increasing the amount of AOPP, negatively related with milk yield because of the
oxide-reductive unbalance. Including high-grain diets and therefore the reduction of for-
age proportion rises the abnormal amount and types of metabolites in rumen [37].
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In viral, bacterial, and fungal infections, phagocytes and neutrophils are sources of
ROS that interfere in a chain of chemical reactions that increase the hypochlorous oxidant
potential which might be useful to combat the photogenes, but damaging tissues. Besides
this, parasites induce inflammatory followed by eosinophils increasing which also con-
tribute to tissues damage. Lactation and heat stress are potential sources of AOPP, thereby
of TNF-a expression and potential mammal glandule diseases, increasing the milk and
meat contents of ROS [45, 46].

Oxidized milk and meat contribute to a higher ROS content in blood plasma which
would be a threating to human welfare [38].

3. Potential clinic effects of antioxidants

Polyphenols are a wide variety of secondary plant metabolites with at least one -OH
that can be structurally simple (egallic and gallic acids) or complex (dymers, olygomeric,
and polymeric with high molecular weight). Antioxidants can be classified as flavonoids
or non-flavonoids, thus flavonoids can be flavones, flavanones, isoflavones, flavonols, fla-
van-3-ols and anthocyanins (from flavan-3-ols derived the condensed tannins (non-hy-
drolysable)), phenolic acids, hydrolysable tannins, and stilbenes are clustered as non-fla-
vonoids [17].

Because of the structural differences among complexes, total phenolic compounds
cannot directly be related with total antioxidant availability [21, 22]. The EGCG, primarily
found in green tea had a galloyl group in the third position and an o-trihydroxy in the 3-
ring which protect cell from ROS damage [42, 47]; by the regulation the over expression
of genes EGCG have anti-inflammatory and antioxidant effects in reduction of apoptosis,
cell fibrosis, and tumoral growing via regulation and reduction of kinases, signal trans-
duction, and transcription activation [44, 48]. EGCG can [49]:

1) Promote the cytotoxicity to increase the antitumoral activities, by producing H202
with its pyrogallol moiety or the reduction of Fe(IIl) to Fe(Il), generating -OH ROS
(although cysteine N-acetyl protect cells from cytotoxicity of H202 it does not avoid
cell death process).

2) Promote apoptosis through mitochondrial damage, membrane depolarization, and
cytochrome c release, and protects against mitochondrial damage-related cell death
without changes in SOD, glutathione peroxidase, Nrf2, Bcl2, and oxidative stress.
Modulates gene expression by inhibiting various transcription factors (including
Spl, NF-xB, AP-1, STAT1, STAT3, and FOXO1) and the expression of NF-kB and
AP-1. EGCG inhibits STAT1 to mediate protective effects on myocardial injury.

3) By increasing second messengers, such as Ca?, cAMP, and cGMP. EGCG elevates
cytosolic Ca? without electrical stimulation by inhibition of SERCA (Ca*-ATPase
activity), which affects the activities of Ca*-requiring enzymes, such as calmodulin
(CAM)-dependent protein kinase II and CAMKKf (CAMKKS is an upstream regu-
lator of AMP-dependent kinase (AMPK), which plays crucial roles in energy metab-
olism and cardiovascular functions). Stimulates vasorelaxation by increasing cAMP
and cGMP in the aorta, then it may stimulate the production of cyclic nucleotides
with beneficial biological effects in cardiovascular physiology.

4)  Inhibit the transcription of FOXOL1 to lead the suppression of basal levels of endo-
thelin-1 and differentiation of adipocytes. In mitochondria, EGCG enhances fat uti-
lization, reducing the expression of leptin and stearyl-CoA desaturase while increas-
ing fat oxidation.

5) EGCG inhibits DNA methyltransferase, which reverses methylation-induced gene
silencing.
6) Inhibits autophagy, leading to apoptosis in macrophage cell lines.

Although the extracts of HS also change the oxidative potential of blood plasma, in-
creasing the glutathione intracellular, but its primarily action is on Renin-Angiotensin-
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Aldosterone System (RAS) interfering the electrolytic regulation, blood pressure, and the
cardiac function [50], the increasing of adrenalin, catecholamines, and noradrenalin (by
specific Angiotensin (Angll)) [51].

Guerrero et al. [52] tested the activity of the Angiotensin Converting Enzyme inhibitor
(ACEI) of 17 different types of flavonoids, the ACEi increased when: 1) the catechol group
was in the 3-ring (3’, 4’-dihidroxy); 2) there is a doble bond between C2 and C3 of carbon
rings; and 3) there is a ketone in the C4 of the carbon ring. The absence of C4 in the car-
bonyl group of EGCG reduce the ACEi ability, delphinidins-3-O-sambubioside and cya-
nidin-3-O-sambubioside chemical structures have primarily ACEi potential.

Studies included in vivo cells [50] showed that delphinidin-3-O-sambubioside and cy-
anidin-3-O-sambubioside inhibit 43 to 50% the ACE (delphinidin-3-O-sambubioside and
cyanidin-3-O-sambubioside vs. control, and 30% less than captopril), furthermore, antho-
cyanins interfered in the RAS reductive process (RT-qPCR mARN of ACE and renin were
analyzed), reducing 37 to 52% the rARN expression for renin. To test the clinic effect of
anthocyanins of HS, Nurfaradilla et al. [53] blocked the left renal artery of mice (2KIC
hypertension) and treated them with HS extracts (30 mg/200 g BW), captopril, and capto-
pril+HS mixtures; HS extracts reduced the systolic blood pressure 17% (average 150 vs. 88,
and 80, control vs. HS, and captopril), although captopril and HS reduced the renin ad
Angll in plasma, HS reduced the ACE activity (1.5 pmol/mL/min control vs. 0.40
pmol/mL/min HS, vs. 0.30 pmol/mL/min captopril).

Other potential pharmacological properties of HS antioxidants are anti-hypercholes-
terolemia, antipyretic, antibacterial, antiviral, and anthelminthic [13, 54].

4. The effect of the anthocyanins in ruminant diets and their productive behavior

4.1. Effects of anthocyanins in ruminal digestibility, volatile fatty acids, and poten-
tial methane gas emissions. The ability of antioxidants to maintain its activities in ruminal
environment, and the molecules abilities to reach the bowel without major modifications.
Although some in vitro studies show no differences among ruminal gas production and
degradability [30, 31, 55], however anthocyanins can improve the ruminal antioxidant po-
tential [30, 31]. Some flavonoids (e.g. tannins) have effects on ruminal microbiota [17, 45],
modifying the gas production kinetics and the volatile fatty acids (VFA) proportions.

The chemical structure, distribution, and elimination of flavonoids affect the interac-
tion and/or synergism between them and the ruminal microbiota. Although all the effects
of anthocyanins in rumen remain unclear, antioxidant and antimicrobial activities of HS
are related to the reduction of methane and N-ammonia (CHs and NHs) caused by the
changes of the by-products that affect the methanogenic microorganisms growth [45, 47].

Some no desirable antioxidant effects are the reduction of the endogenous fibrolytic
enzymes activities, and thereby the potential fiber digestibility and protein absorption
[57]. In addition, as other polyphenols sources, some HS components with high-lignin
contents have low DM digestibility (DMD), however, antioxidants can modify and im-
prove the biohydrogenation of fatty acids [57] and increase the milk and meat’ polyun-
saturated fatty acids (PUFA) [58].

4.2. Effect of anthocyanins after rumen. Some polyphenols are hydrolyzed and trans-
formed through endogenous enzymatic activities and ruminal bacteria [59], therefore the
secondary metabolites cross through the ruminal epithelium and the non-absorbed are
bio-converted in the small bowel (as it occurs in monogastric) [59] and pass to the blood-
stream [34, 57, 60, 61] to deposit in tissues [45, 60].

Anthocyanins can improve the blood plasma resistance to oxidation [32, 62]. Cya-
nidin-3-O-sambubioside and delphinidin-3-O-sambubioside can be deposit in lung, car-
diac, renal, and hepatic tissues [46], suggesting that anthocyanins can improve the meat
and milk antioxidant potential. In addition to the improvement of biohydrogenation of
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fatty acids in the ruminal environment, anthocyanins increase the animal products to hu-
man feed.

Although the milk yield and fat milk have improvements have not been related to
anthocyanin addition in ruminant diets [32], the potential clinical effects of delphinidin-
3-O-sambubioside and cyanidin-3-O-sambubioside of HS on RAS, could as in humans,
interfere in the homeostatic balance of ruminants affecting the milk yield [63].

Although the reports about the potential effects of HS anthocyanins on fertility pa-
rameters are not consistent, other sources of polyphenols, as coffee can improve the semen
quality [64] but could reduce the fertilization rates even when progesterone, estradiol, and
follicle-stimulating hormone (FSH) remain constant [61]. In contrast, other types of anti-
oxidants as selenium and a-tocopherol might increase some reproductive parameters [27].
Therefore, further studies could be focused on the effect of HS anthocyanins on estrous,
and milk and meat production.

5. Effects of HS anthocyanins milk and meat shelf-life

Besides the positive effects of increasing the meat and milk antioxidants on human
welfare, anthocyanins could increase the shelf-life of animal products [65-67]. Overall,
polyphenols avoid lipids and proteins oxidation (hyper-peroxides, aldehydes, and ke-
tones), autolysis, and microbial pollution [28, 68-70].

6. Hibiscus sabdariffa L. by-products

As with other agricultural wastes and by-products the inclusion, of the seeds, stalks,
and leaves of HS might reduce the economic and environmental livestock costs [71-73], in
addition, optimal inclusion of by-products and wastes in balanced ruminant diets should
not have negative effects on animal productive behavior [67, 74-76].

The phenolic and antioxidant activities of HS seeds have been previously assayed and
resulted similar or better than those in calyxes [77], but the comparison of the potential
effects of seeds with calyxes should be assayed in ruminal liquid, including a test to inter-
pret the ruminal microorganisms-fibrolytic enzymes with the feedstuff” cell walls.

In average, HS seeds have: crude protein (CP), 27.9+10 g/100 g of dry matter (DM);
fat, 18.8+8.6 g/100 g DM; crude fiber (CF), 16.8+11.1 g/100 DM; and ashes, 5.86+3.2 g/100
DM (74, 78) (Table 1).

Table 1. Hibiscus sabdariffa L. chemical composition.

Authors DM CP EE CF Ashes
g/100 g g/100 DM
Maffo et al. [74] 90.0 22.0 22.0 20.0 6.1
Wang et al. [88] NR NR 180 NR NR
Ismail et al. [89] 90.0 335 221 183 NR
Shaheen y El-Nakhlawy [90]* NR 314 232 429 55
Udayasekhara [91]** 92.4 20.6 21.0 41.1 54
Beshir y Babikier [84] 96.6 303 11.1 5.1 5.6
Fagbrnhro [2] 92.6 394 6.1 177 114
Jinez et al. [92] 92.5 20.6 18.0 23.7 6.7
Kwari et al. [93] NR 386 NR 135 NR
Mukhtar [94] 91.8 214 174 120 53

Soriano y Tejeda [95] 92.7 248 17.8 229 1.6
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Anhwange et al. [96] 94.0 19.8 28.0 6.3 5.6
Tounkara et al. [81] 91.8 27.3 20.8 NR 4.5

DM, dry matter; CP, crude protein; EE, ether; CF, crude fiber; NR, no reported; *Average

of three varieties; **Average from two varieties.

CP content of HS seeds is comparable to the soybean and canola seeds (79), their fatty
acids are primarily oleic and linoleic (n-9 and n-6) (37.68+1.10% and 34.14+1.25%) (Table
2) (10, 80, 81), and its DM and CP in situ degradability had been similar to sunflower and
peanut seeds [82].

Table 2. Proportion of fatty acids in Hibiscus sabdariffa L. seeds and calyxes.

Seeds Calyxes
Tounkara et al. Mahmoud et al. Jabeur et al.
[81] [80] [11]
Saturated fatty acids (%)
Miristic (C14:0) 0.21 0.26 1.24 +0.01
Palmitic (C16:0) 19.21 20.52 27.73 +0.02
Estearic (C18:0) 5.13 5.79 4.46 +0.01
Araquidonic (C20:0) 0.67 1.02 £ 0.05
Polyunsaturated fatty acids (%)
Palmitoleic (C16:1) 0.36 1.32+0.04
Oleic (C18:1) 36.9 38.46 9.1+0.1
Linoleic (C18:2) 35.02 33.25 32.65+0.07
a-linoleic (C18:3) 1.85 1.69 15.76 £ 0.04

Substituting 75% of total CP might not negatively affect animal performance [78]. Pre-
viously, the inclusion of <25% of the total DM of sheep’ diets with HS seeds increased the
final body weight and carcass proportion [83], and in other studies, adding 10-20% of HS
seeds improved the organoleptic and quality fatty acids properties of sheep meat [84].

Overall, increase the long-chain fatty acids (n-3, n-6, and n-9) in ruminant diets im-
prove the fatty acids composition of milk and meat [85-87].

7. Limitations and perspectives

The relationship among potential antioxidant activities of calyxes, seeds, and stalks
anthocyanins of HS with the ruminal microbiota and fibrolytic enzymes remain unknown.
In comparison to the studies included in the present review that tested other polyphenols
in the ruminal environment, hypothetically positive effects of HS anthocyanins would be
the potential reduction of CHs, and on the fatty acids biohydrogenation process, but also
it could reduce the potential fiber degradability [45, 47, 57, 58].

Since antioxidants have a potential reduction of AOPP related with the milk yield
improvement, the available information about biochemical and RAS changes promoted
by delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside of HS [52, 63] could be
considered in further in vivo studies to find inclusion doses that would improve the com-
position of the antioxidant and fatty acids and milk yield. However, optimal inclusion
should avoid potential negative effects on animal performance and reproductive param-
eters.
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8. Conclusions

The excess of ROS unbalances the oxide-reductive potential in ruminants fed with
high-grain diets, exposed to bacterial, viral, and helminthic diseases, and to excessive met-
abolic exigency and heat stress. HS contain flavonoids primarily classified as anthocya-
nins which are mainly cyanidin-3-O-sambubioside and delphinidin-3-O-sambubioside
show specific actions on RAS regulation, increasing the ACEi action and reducing the ex-
pression of renin genes. In ruminal environment, they can reduce methanogens microor-
ganisms, and interact with substrates, fibrolytic microbiota and enzymes affecting the fi-
ber degradability and the lipids biohydrogenation, which might change the animal per-
formance and the quality of milk and meat lipids. After rumen, anthocyanins are absorbed
in small bowel and cross to bloodstream improving the blood resistance to oxidation, and
they can be deposited in tissues to increase the milk and meat yields and antioxidant po-
tential. Further studies about the specific action of cyanidin-3-O-sambubioside and del-
phinidin-3-O-sambubioside on RAS in ruminants would be useful to understand their po-
tential effects on milk yield, besides this, HS antioxidants should be analyzed on the ru-
minant reproductive parameters. Although the HS seeds antioxidant effects remain un-
known, including HS seeds had not negative affected the ruminant productive behavior
but had improved the body weight gain and the fatty quality and proportion in meat.
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