Fractal behavior and long-range dependence are widely observed in measurements and characterization of traffic flow in high-speed computer networks of different technologies and coverage levels. This paper presents the results obtained when applying fractal analysis techniques on a time series obtained from traffic captures coming from an application server connected to the Internet through a high-speed link. The results obtained show that traffic flow in the dedicated high-speed network link have fractal behavior when the Hurst exponent is in the range of 0.5, 1, the fractal dimension between 1, 1.5, and the correlation coefficient between –0.5, 0. Based on these results, it is ideal to characterize both the singularities of the traffic and its impulsiveness during a fractal analysis of temporal scales. Finally, based on the results of the time series analyses, the fact that the traffic flows of current computer networks exhibit fractal behavior with a long-range dependency is reaffirmed.
Keywords:
Subject: Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.