Preprint
Communication

This version is not peer-reviewed.

Mechanical Properties Enhancement of the Au-Cu-Al Alloys via Phase Constitution Manipulation

A peer-reviewed article of this preprint also exists.

Submitted:

22 May 2021

Posted:

24 May 2021

You are already at the latest version

Abstract
To enhance the mechanical properties (i.e. strength and elongation) of the face-centered cubic (fcc) α-phase in the Au-Cu-Al system, this study focused on the introduction of the martensite phase (doubled B19 (DB19) crystal structure of Au2CuAl) via the manipulation of alloy compositions. Fundamental evaluations, such as microstructure observations, phase identifications, thermal analysis, tensile behavior examinations, and reflectance analysis have been conducted. The presence of fcc annealing twins was both observed in the optical microscope (OM) and the scanning electron microscope (SEM) images. Both the strength and elongation of the alloys were greatly promoted while the DB19 martensite phase was introduced into the alloys. Amongst all the prepared specimens, the 47Au41Cu12Al and the 44Au44Cu12Al alloys performed the optimized mechanical properties. The enhancement of strength and ductility in these 2 alloys was achieved while the stress plateau was observed during the tensile deformation. A plot of the ultimate tensile strength (UTS) against fracture strain was constructed to illustrate the effects of the introduction of the DB19 martensite phase on the mechanical properties of the alloys. Regardless of the manipulation of the alloy compositions and the introduction of the DB19 martensite phase, the reflectance stayed almost identical to pure Au.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated