Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) family that identify pathogen-associated molecular patterns derived from microbes and activate immune cell response. Following TLRs ligation, different adaptor and transcription molecules such as myeloid differentiation primary response gene 88 (MyD88) and nuclear factor kappa B (NF-kB) are recruited that initiate inflammatory signaling pathways. The human Toll-like receptor 10 (hTLR10) is a novel member of the PRRs family with a regulatory function of immune responses because of unique cytoplasmic domains which lead to induction of both inflammatory and anti-inflammatory properties. Recent studies have reported the association of TLR10 polymorphisms with many inflammatory diseases and human cancer. Engagement of TLR10 on the surface of the epithelium and macrophages leads to the production of proinflammatory cytokines and chemokines, while other studies have proven an anti-inflammatory role of TLR10. Accordingly, TLR10 suppresses proinflammatory cytokine production via negative regulation of MyD88 and the Akt (protein kinase B) and MAPK (mitogen-activated protein kinase) signaling pathways. This review aimed to provide answers for these conflicting findings (Inflammatory and anti-inflammatory properties of TLR10) to further identify distinct biological functions of TLR10.
Keywords:
Subject:
Medicine and Pharmacology - Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.