Preprint
Article

Category Algebras and States on Categories

Altmetrics

Downloads

138

Views

194

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

28 May 2021

Posted:

31 May 2021

You are already at the latest version

Alerts
Abstract
The purpose of this paper is to build a new bridge between category theory and a generalized probability theory known as noncommutative probability or quantum probability, which was originated as a mathematical framework for quantum theory, in terms of states as linear functional defined on category algebras. We clarify that category algebras can be considered as generalized matrix algebras and that the notions of state on category as linear functional defined on category algebra turns out to be a conceptual generalization of probability measures on sets as discrete categories. Moreover, by establishing a generalization of famous GNS (Gelfand-Naimark-Segal) construction, we obtain a representation of category algebras of †-categories on certain generalized Hilbert spaces which we call semi-Hilbert modules over rigs.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated