Preprint
Article

Thermal Noise Decoupling of Micro-Newton Thrust Measured in a Torsion Balance

Altmetrics

Downloads

243

Views

241

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 May 2021

Posted:

31 May 2021

You are already at the latest version

Alerts
Abstract
The space gravitational wave detection and drag free control requires the micro-thruster to have very low thrust noise within 0.1mHz~100mHz, which poses a great challenge to the ground thrust test. The evaluation and decoupling of thermal noise are the difficulties in the application of torsion balance for most thrusters dissipate heat in the experiment. The research has adopted a calibration scheme of micro-Newton thrust torsion balance. On the basis of Lisa Pathfinder's former research and using ideas inspired from PID control and multi time scale (MTS) for reference, the paper proposes to expand the state space of temperature to be applied on thrust prediction based on fine tree regression (FTR), to subtract the thermal noise filtered by transfer function fitted with z-domain vector fitting (ZDVF). The results show that the thrust amplitude thrust density in diurnal temperature fluctuation is decoupled from 24μN/Hz1/2 to 4.9μN/Hz1/2 at 0.11mHz. And the 1μN square wave modulations of electrostatic fins (ESF) is extracted from the simultaneously ambiguous background of temperature for PTC's heating and cooling. The FTR method is well demonstrated in thermal noise decoupling and can guide the design of thermal control and be extended to other physical quantities for noise decoupling.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated