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Abstract

We define degree of dependence of two events A and B in a prob-
ability space by using Boltzmann-Shannon entropy function of an ap-
propriate probability distribution produced by these events and de-
pending on one parameter (the probability of intersection of A and
B) varying within a closed interval I.

The entropy function attains its global maximum when the events
A and B are independent. The important particular case of discrete
uniform probability space motivates this definition in the following
way. The entropy function has a minimum at the left endpoint of
I exactly when one of the events and the complement of the other
are connected with the relation of inclusion (maximal negative depen-
dence). It has a minimum at the right endpoint of I exactly when one
of these events is included in the other (maximal positive dependence).

Moreover, the deviation of the entropy from its maximum is equal
to average information that carries one of the binary trials A∪Ac and
B ∪Bc with respect to the other. As a consequence, the degree of de-
pendence of A and B can be expressed in terms of information theory
and is invariant with respect to the choice of unit of information.

Using this formalism, we describe completely the screening tests
and their reliability, measure efficacy of a vaccination, the impact of
some events from the financial markets to other events, etc.
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1 Introduction, Definitions, Notation

1.1 Introduction

In this paper we study the set of ordered pairs (A,B) of events in a probability
space in order to define a measure of dependence (the power of relations)
between A and B. This is done by means of Boltzmann-Shannon entropy
of a variable probability distribution that arises naturally out of the pair
(A,B). This approach is radically different from the standard ones where
most of the measures of dependence are linear functions in the probability
of intersection A ∩ B, see Section 4. For a detailed study of these measures
refer to [2].

The ordered pairs (A,B) in the form of two-attributed tables are used metic-
ulously by G. Udny Yule in his memoir [9] in order to ”...classify the objects
or individuals observed into two classes only”. He presents various examples
and defines different indices to study the degree of association (dependence)
of the corresponding two events. Any such ordered pair of events is said to
be, as we termed it, an Yule’s pair of events. G. Udny Yule himself noted
that W. R. Macdonell in [4] used a two-attributed table as a tool to study
”...the degree of effectiveness of vaccination in small-pox”.

The paper is organized as follows. In Section 2 we parameterize the members
of an equivalence class consisting of Yule’s pairs with fixed probabilities α
and β (that is, Yule’s pairs of type (α, β)). We use the fact that the proba-
bility distribution produced by the probabilities of results of the experiment
corresponding to a Yule’s pair (cf. [3, I,§5]) is solution of a linear system with
one free variable θ ( see (2.1.3)). The system of inequalities that restrict the
components of this solution is equivalent to the restriction of the variation
of θ within a closed interval I(α, β) ⊂ [0, 1]. Thus, we naturally introduce
(α, β, θ)-equivalence classes of Yule’s pairs, whose members are said to be
Yule’s pairs of type (α, β, θ). Note that for any such pair, θ is the probability
of the intersection of its components.

When we vary (α, β) ∈ [0, 1]2, the segment {α} × {β} × I(α, β) sweeps
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a tetrahedron T3 in R3, so the (α, β, θ)-equivalence classes of Yule’s pairs
are represented by some points in T3, which, in turn, form so called dotted
tetrahedron T

(·)
3 .

On the other hand, the affine isomorphism (2.1.4) which transforms R3

onto the hyperplane H in R4 that contains the solutions of the linear sys-
tem (2.1.3), transforms the tetrahedron T3 onto the 3-simplex Σ3 ⊂ H.

Moreover, the dotted tetrahedron T
(·)
3 is mapped on the dotted 3-simplex

Σ(·) ⊂ H, the latter classifying the probability distributions produced by all
Yule’s pairs. For the precise statements see Theorem 2.1.2 and Figure 1.

Given a Yule’s pair of type (α, β, θ), Boltzmann-Shannon entropy Eα,β(θ)
of its distribution is a continuous function in θ ∈ I(α, β) and its behaviour
is described in Theorem 3.1.1 from Section 3. In particular, we show that
Eα,β(θ) attains its global maximum at the only point θ0 = αβ for which
the components of all Yule’s pairs of type (α, β, θ0) (if any) are independent.
The special case of a sample space with equally likely outcomes illustrates the
fact that the maximum of dependence occurs at the endpoints of the interval
I(α, β). More precisely, at the left endpoint we have A ⊂ Bc or Bc ⊂ A and
at the right endpoint — A ⊂ B or B ⊂ A.

Finally, Eα,β(θ) = Eβ,α(θ) and this common entropy function strictly in-
creases to the left of θ0 an strictly decreases to the right.

All of this motivates the use of entropy function Eα,β(θ) as a measure of de-
pendence of two events A and B with Pr(A) = α and Pr(B) = β: Negative
dependence to the left of θ0 and positive dependence to the right. By modify-
ing appropriately Eα,β(θ) by linear functions, we obtain a strictly increasing
continuous function eα,β which maps the range of θ onto the interval [−1, 1]
and serves (and is termed) as degree of dependence of the events A and B.

It turns out that the expression for entropy function Eα,β is a particular case
of what Shannon called in [6, Part I, Sction 6] the entropy of the joint event.
More precisely, this is the complete amount of information which contains in
the results of the experiment J from (2.1.1). On the other hand, J is the joint
experiment of two binary trials: A = A∪Ac and B = B∪Bc. Theorem 3.3.1
shows that the mutual information I(A,B) of the experiments A and B is
equal to the deviation of the entropy Eα,β(θ) from its maximum Eα,β(αβ).
In accord with the expression (3.3.2) which represents the function eα,β(θ) as
a fraction of amounts of information, the degree of dependence of two events
is invariant with respect to change of unit of information (bits, nats, etc.).
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In case Yule’s pairs are models of a screening tests, the probability F−(θ)
of false negative and the probability F+(θ) of false positive test are tending
from statistically insignificant nearby the left endpoint of the range of θ to
statistical significance in a neighbourhood of the right endpoint. Moreover,
on the complement of any such neighbourhood the product F−(θ)F+(θ) is
bound below by a positive constant. In other words, a kind of uncertainty
principle holds — see Subsection 3.4.

In Subsection 3.5 we show that the degree of dependence of pairs of events
can be used as a measure of effectiveness of vaccine for a particular decease.
As an example we estimate the efficacy of vaccine for small-pox tested via
the epidemic at Sheffield in 1887-88, the statistical data taken from [9, I] .

In Section 4 we give several examples of other measures of dependence which
are evaluated by using Sheffield’s sample.

1.2 Definitions and Notation

Let (Ω,A,Pr) be a probability space with set of outcomes Ω, σ-algebra A,
and probability function Pr. In this paper we are using only the structure of
Boolean algebra on A.

We introduce the following notation:

R is the range of the probability function Pr: A → R; [(α, β)] is the fiber
of the surjective map A2 → R2, (A,B) 7→ (Pr(A),Pr(B)), over (α, β) ∈ R2;
θ(A,B) = Pr(A∩B), (A,B) ∈ A2; [(α, β, θ)] is the fiber of the map [(α, β)]→
R, (A,B) 7→ θ(A,B), with image R(α,β) ⊂ R, over any θ ∈ R(α,β).

We note that the fibers [(α, β)] for (α, β) ∈ R2 form a partition of A2 and
the fibers [(α, β, θ)] for θ ∈ R(α,β) form a partition of [(α, β)].

The events ∅ and Ω are called trivial. The members of the equivalence class
[(α, β)] (resp., the equivalence class [(α, β, θ)]) are said to be Yule’s pairs of
type (α, β) (resp., Yule’s pairs of type (α, β, θ)).
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2 Classification of Yule’s Pairs

2.1 The Probability Distribution of a Yule’s Pair

Any ordered pair (A,B) ∈ A2 produces an experiment

J = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B) ∪ (Ac ∩Bc) (2.1.1)

(cf. [3, I,§5]) and the probabilities of its results:

ξ
(A,B)
1 = Pr(A ∩B), ξ

(A,B)
2 = Pr(A ∩Bc),

ξ
(A,B)
3 = Pr(Ac ∩B), ξ

(A,B)
4 = Pr(Ac ∩Bc).

For any (A,B) ∈ [(α, β)], the probability distribution

(ξ1, ξ2, ξ3, ξ4) = (ξ
(A,B)
1 , ξ

(A,B)
2 , ξ

(A,B)
3 , ξ

(A,B)
4 ) (2.1.2)

satisfies the linear system∣∣∣∣∣∣∣∣
ξ1 + ξ2 = α

ξ3 + ξ4 = 1− α
ξ1 + ξ3 = β

ξ2 + ξ4 = 1− β.

(2.1.3)

Let H be the affine hyperplane in R4 with equation ξ1 + ξ2 + ξ3 + ξ4 = 1.
The solutions of (2.1.3) depend on one parameter, say θ = ξ1, and form a
straight line `α,β in H with parametric representation

`α,β : ξ1 = θ, ξ2 = α− θ, ξ3 = β − θ, ξ4 = 1− α− β + θ.

The map

ι : R3 → H, (α, β; θ) 7→ (θ, α− θ, β − θ, 1− α− β + θ) (2.1.4)

is an affine isomorphism with inverse affine isomorphism

χ : H → R3, ξ 7→ (ξ1 + ξ2, ξ1 + ξ3, ξ1).

The trace of the 4-dimensional cube {ξ ∈ R4|0 ≤ ξk ≤ 1, k = 1, 2, 3, 4} onto
the hyperplane H is the 3-dimensional simplex, that is, the tetrahedron, ∆3

defined in H by the inequalities

ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0, ξ1 + ξ2 + ξ3 ≤ 1.

5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2021                   doi:10.20944/preprints202106.0100.v2

https://doi.org/10.20944/preprints202106.0100.v2


The inverse image T3 = ι−1(∆3) via the affine isomorphism ι is the tetrahe-
dron in R3 defined by the system of inequalities

θ ≤ α, θ ≤ β, θ ≥ α + β − 1, θ ≥ 0. (2.1.5)

In other words, this is the tetrahedron with vertices O(0, 0, 0), M(1, 0, 0),
N(0, 1, 0), P (1, 1, 1) — see Figure 1.

For any (α, β) ∈ R2 we set C(α, β) = λα,β ∩ T3, so C(α, β) = {α} × {β} ×
I(α, β), I(α, β) ⊂ R. The system (2.1.5) yields that I(α, β) equals the closed
interval [`(α, β), r(α, β)], `(α, β) = max(0, α + β − 1), r(α, β) = min(α, β).
We have αβ ∈ I(α, β) and denote by I̊(α, β) the interior of the interval
I(α, β) . We obtain immediately:

Lemma 2.1.1 Let (α, β) ∈ [0, 1]2. The next three statements are equivalent:

(i) One has (α, β) ∈ (0, 1)2.

(ii) One has αβ ∈ I̊(α, β).

(iii) One has I̊(α, β) 6= ∅.
(iv) Under the above conditions, one has ξk(θ) > 0 for all θ ∈ I̊(α, β) and all
k = 1, 2, 3, 4.

(v) Conversely, if there exists θ ∈ I(α, β) such that ξk(θ) > 0 for all k =
1, 2, 3, 4, then (i) — (iii) hold.

We have R(α,β) ⊂ I(α, β) and define the dotted interval I(·)(α, β) = R(α,β).
The dotted segment C(·)(α, β) = {α} × {β} × I(·)(α, β), (α, β) ∈ R2, is the
locus of all triples of probabilities (α, β, θ(A,B)), where (A,B) ∈ [(α, β)].

For any (α, β) ∈ R2 we set D(α, β) = ι(C(α, β)). Since ι(λα,β) = `α,β, we
obtain that D(α, β) = `α,β ∩∆3.

Let Ik(α, β) = [`k(α, β), rk(α, β)] be the corresponding range of the real vari-
able ξk(θ) for k = 1, 2, 3, 4, with I1(α, β) = I(α, β). The line segment D(α, β)
in `α,β has endpoints

(`1(α, β), `2(α, β), `3(α, β), `4(α, β)), (r1(α, β), r2(α, β), r3(α, β), r4(α, β)).

Since ι is also a homeomorphism, we have D̊(α, β) = `α,β ∩ ∆̊3.

The line segment D(α, β) contains the dotted segment D(·)(α, β) which is the
locus of all probability distributions (2.1.2) for which (A,B) ∈ [(α, β)].
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Finally, we note that T3 = ∪(α,β)∈[0,1]2C(α, β), Σ3 = ∪(α,β)∈[0,1]2D(α, β), and

the unions T
(·)
3 = ∪(α,β)∈R2C(·)(α, β), Σ

(·)
3 = ∪(α,β)∈R2D(·)(α, β) are the corre-

sponding dotted tetrahedrons.

The above considerations and Figure 1 yield the following theorem and its
corollary.

Theorem 2.1.2 (i) The affine isomorphism ι : R3 → H from (2.1.4) is a
strictly increasing transformation of any line segment C(α, β) (resp., dotted
line segment C(·)(α, β)) onto the line segment D(α, β) (resp., onto the dotted
line segment D(·)(α, β)).

(ii) ι maps the tetrahedron T3 (resp., dotted tetrahedron T
(·)
3 ) onto the tetra-

hedron Σ3 (resp., onto the dotted tetrahedron Σ
(·)
3 ).

(iii) The dotted tetrahedron T
(·)
3 is the classification space of all equivalence

classes [(α, β, θ)] of Yule’s pairs.

(iv) The dotted tetrahedron Σ
(·)
3 is the classification space of all probability

distributions (2.1.2) produced by Yule’s pairs.

Corollary 2.1.3 (i) One has ξ1(θ) = 0 if and only if (α, β, θ) ∈MON .

(ii) One has ξ2(θ) = 0 if and only if (α, β, θ) ∈ NOP .

(iii) One has ξ3(θ) = 0 if and only if (α, β, θ) ∈MOP .

(iv) One has ξ4(θ) = 0 if and only if (α, β, θ) ∈MNP .

3 Entropy and Dependence of Yule’s Pairs

3.1 Entropy of a Yule’s Pair

Let us suppose that (α, β) ∈ (0, 1)2. Then Lemma 2.1.1 implies I̊(α, β) 6= ∅
and ξk(θ) > 0 for θ ∈ I̊(α, β) and for all k = 1, 2, 3, 4. Therefore Boltzmann-
Shannon entropy of the probability distribution (ξ1(θ), ξ2(θ), ξ3(θ), ξ4(θ)) is
defined (cf. [6], [7]):

Eα,β(θ) = −
4∑

k=1

ξk(θ) ln(ξk(θ)), θ ∈ I̊(α, β).
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Theorem 3.1.1 Let (α, β) ∈ (0, 1)2.

(i) For any θ ∈ I̊(α, β) one has

E ′α,β(θ) = ln
ξ2(θ)ξ3(θ)

ξ1(θ)ξ4(θ)
.

(ii) The function Eα,β(θ) in θ strictly increases on the interval (`(α, β), αβ]
and strictly decreases on the interval [αβ, r(α, β)), having a global maximum
at θ = αβ.

(iii) The function Eα,β(θ) can be extended uniquely as a continuous func-
tion on the closed interval I(α, β), which strictly increases on the interval
[`(α, β), αβ] and strictly decreases on the interval [αβ, r(α, β)].

(iv) One has I(α, β) = I(β, α) and Eα,β = Eβ,α.

Proof: (i) We have

E ′α,β(θ) = −
4∑

k=1

ξ′k(θ) ln(ξk(θ))−
4∑

k=1

ξk(θ)
ξ′k(θ)

ξk(θ)
= ln

ξ2(θ)ξ3(θ)

ξ1(θ)ξ4(θ)
.

(ii) The equation E ′α,β(θ) = 0 (resp., the inequality E ′α,β(θ) > 0) is equivalent
to θ = αβ (resp., θ < αβ).

(iii) According to Corollary 2.1.3, one or two functions ξk(θ) are zero at any
endpoint of each interval I(α, β) and all functions ξk(θ) are strictly positive
on the interior I̊(α, β). For a fixed interval I(α, β) and a fixed endpoint a of
I(α, β) the limit limθ→aEα,β(θ) exists and we extend Eα,β(θ) as continuous
at the point a.

(iv) We have I(α, β) = I(β, α) and the transposition of events A and B yields
transposition of the functions ξ2(θ) and ξ3(θ).

The continuous function Eα,β(θ) in θ ∈ I(α, β) is said to be the entropy
function of Yule’s pairs of type (α, β) and its value at θ = θ(A,B) is called
entropy of Yule’s pair (A,B) of type (α, β).

Theorem 3.1.1 implies immediately

Corollary 3.1.2 Let (α, β) ∈ (0, 1)2. The following three statements are
equivalent:
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(i) One has θ0 = αβ.

(ii) If Yule’s pair (A,B) of type (α, β) satisfies the equality ξ
(A,B)
1 = θ0, then

the events A and B are independent.

(iii) The entropy function Eα,β(θ) of Yule’s pairs of type (α, β) attains its
global maximum at the point θ0.

3.2 Degree of Dependence of Pairs of Events

We ”normalize” the entropy function by composing the functions Eα,β(θ)
and 2Eα,β(αβ)−Eα,β(θ) on the intervals of their increase by the appropriate
linear functions and obtain for any pair (α, β) ∈ (0, 1)2 a continuous function
eα,β : I(α, β) → [−1, 1]. In accord with Theorem 3.1.1, (iv), we have eα,β =
eβ,α. The value of the function eα,β at θ ∈ I(α, β), θ = θ(A,B), is said to be
degree of dependence of the events A and B with α = Pr(A), β = Pr(B).

The function eα,β strictly increases on the interval I(α, β) from −1 to 1 and
attains value 0 at the point αβ. The events A and B are said to be negatively
dependent if θ(A,B) < αβ and positively dependent if θ(A,B) > αβ. When
θ(A,B) = αβ the events A and B are independent (the entropy is maximal). In
a small neighbourhood of the left endpoint `(α, β) of the interval I(α, β) the
dependence is negatively strong, with ”maximum” 1 = | − 1| at θ = `(α, β)
(if attainable). In a small neighbourhood of the right endpoint r(α, β) of
the interval I(α, β) the dependence is positively strong, with maximum 1 at
θ = r(α, β) (if attainable). In both cases, the entropy is minimal at the
endpoints `(α, β) and r(α, β) of the corresponding semi-intervals. Note that
in a small neighbourhood of the point θ = αβ the events A and B are ”almost
independent” (the entropy is close to its maximum).

3.3 A Glance at the Information Theory

The experiment J from (2.1.1) is the joint experiment (see [6, Part I, Section
6]) of two simpler binary trials: A = A∪Ac and B = B∪Bc with Pr(A) = α,
Pr(B) = β. The average quantity of information of one of the experiments
A and B, relative to the other, (see [1, §1]), is defined in this particular case
by the formula

I(A,B) = ξ1 ln
ξ1
αβ

+ξ2 ln
ξ2

α(1− β)
+ξ3 ln

ξ3
(1− α)β

+ξ4 ln
ξ4

(1− α)(1− β)
.
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(3.3.1)

The definition of the degree function eα,β(θ) and (3.3.1) yield immediately
the following:

Theorem 3.3.1 (i) One has

I(A,B)(θ) = Eα,β(αβ)− Eα,β(θ)

for all θ ∈ I(α, β).

(ii) One has

eα,β(θ) =

{
− Eα,β(αβ)−Eα,β(θ)
Eα,β(αβ)−Eα,β(`(α,β))

if `(α, β) ≤ θ ≤ αβ
Eα,β(αβ)−Eα,β(θ)

Eα,β(αβ)−Eα,β(r(α,β))
if αβ ≤ θ ≤ r(α, β).

(3.3.2)

Remark 3.3.2 Since

Eα,β(αβ)− Eα,β(`(α, β)) = max
`(α,β)≤τ≤αβ

I(A,B)(τ),

Eα,β(αβ)− Eα,β(r(α, β)) = max
αβ≤τ≤r(α,β)

I(A,B)(τ),

we can write down the equality (3.3.2) in the form

eα,β(θ) =

{
− I(A,B)(θ)

max`(α,β)≤τ≤αβ I(A,B)(τ)
if `(α, β) ≤ θ ≤ αβ

I(A,B)(θ)
maxαβ≤τ≤r(α,β) I(A,B)(τ)

if αβ ≤ θ ≤ r(α, β).

Part (ii) of the above theorem implies

Corollary 3.3.3 The degree of dependence of two events does not depend on
the choice of unit of information.

The graphs of Eα,β and eα,β for some particular (α, β) ∈ (0, 1)2 are presented
in Figures 2 and 3.
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3.4 Application: Description of a Screening Test

According to Merriam-Webster Dictionary, a screening test is ”...a prelimi-
nary or abridged test intended to eliminate the less probable members of an
experimental series”. In other words, some of the equally likely outcomes
of a sample space Ω possess a property and, in this way, form an event A.
On the other hand, there exists an event B consisting of all outcomes which
as if have this property after conducting the test. Thus, we obtain a Yule’s
pair of events in a sample space Ω. The test does not always work perfectly
— sometimes it is negative under the condition that the property is present
(that is, false negative), and sometimes it is positive under the condition
that the property is absent (that is, false positive). Let us suppose that all
members of the population are tested and that Pr(A) = α, Pr(B) = β, where
(α, β) ∈ (0, 1)2. Yule’s pair (A,B) produces the experiment (2.1.1) and in
turn, the probability distribution (2.1.2) consisting of its results. In the nota-
tion introduced in Subsection 2.1, the probability F− of false negative result

is
ξ
(A,B)
2

α
= α−θ

α
and the probability F+ of false positive result is

ξ
(A,B)
3

1−α = β−θ
1−α ,

where θ = θ(A,B). The product F−(θ)F+(θ) is a quadratic function in θ which
strictly decreases on the interval I(α, β) and assumes value 0 at its right end-
point r(α, β). In particular, for the complement of any open neighbourhood
of r(α, β) in the interval I(α, β), there exists a positive constant K such that
F−(θ)F+(θ) ≥ K for any point θ from this complement. In other words,
both F−(θ) and F+(θ) can not be simultaneously as small as we want (a kind
of uncertainty principle). The conditional probabilities F−(θ) and F+(θ) are
statistically acceptable in a small neighbourhood of the point r(α, β), at least
one being 0 at this point. The reliability of F−(θ) and F+(θ) decreases when
θ approaches the left endpoint `(α, β) of I(α, β). When θ = `(α, β), at least
one of F−(θ) and F+(θ) is equal to 1. In terms of the degree of dependence
eα,β(θ), θ = θ(A,B), of the events A and B, this behaviour can be described
in the following way: When eα,β(θ) is close to −1, then the test is not re-
liable but its effectiveness increases when eα,β(θ) approaches 1. In a small
neighbourhood of 1 the test is statistically acceptable.

3.5 Application: Effectiveness of Vaccination

Let us consider a population whose members have a particular disease for
which a vaccine is developed. Let A be the set of all those who have recovered
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and let B be the set of vaccinated members. Then Ac is the set of all fatal
endings and Bc is the set of unvaccinated. If α = Pr(A), β = Pr(B), then
the degree of dependence eα,β(θ), θ = θ(A,B), of the events A and B measures
the effectiveness of the corresponding vaccine. More precisely, when eα,β(θ)
is close to −1, then the vaccine is counterproductive and its effectiveness
increases being negative when eα,β(θ) < 0 and positive when eα,β(θ) > 0. In
case eα,β(θ) = 0 the vaccination does not influence the recovery and it is very
positively effective when eα,β(θ) is close to 1.

In his memoir [9, Section I, Table I], G. Udny Yule presents a table used
by W. R. Macdonell in [4] in order to show ”...the recoveries and deaths
amongst vaccinated and unvaccinated patients during the small-pox epidemic
at Sheffield in 1887-88”, see Table 1.

We have α = 0.88262811, β = 0.899213268, θ = 0.840102063, and eα,β(θ) =
0.268810618. Therefore the results of this vaccination are faintly positive
(the recovery is not only due to vaccination!).

Yule’s pair (A,B) considered as a screening test has statistically acceptable
false negative probability Pr(Bc|A) ≈ 0.0482 (the probability that a mem-
ber is unvaccinated under the condition that he/she is recovered). On the
other hand, this test has not statistically significant false positive probabil-
ity Pr(B|Ac) ≈ 0.4964 (the probability that a member of the population
was vaccinated under the condition that he/she is dead). Equivalently: the
matter of life and death depended of the result of tossing an almost fair coin!

4 Other Measures of Dependence

In this section we assume that Ω is a sample space with equally likely out-
comes.

4.1 Yule’s Q

The difference δ = Pr(A ∩ B) − Pr(A) Pr(B) = θ − αβ (the deviation from
independence) is called copula between A and B. It is cited by G. Udny Yule
in [9, Section I, no 5]. He notes there that the relation δ = ξ1(θ)ξ4(θ) −
ξ2(θ)ξ3(θ) is due to Karl Pearson (one of his teachers).

In [9, Section I, no 9], G. Udny Yule introduces his measure of association
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first given in [8, Section I, no 9]:

Q =
ξ1(θ)ξ4(θ)− ξ2(θ)ξ3(θ)
ξ1(θ)ξ4(θ) + ξ2(θ)ξ3(θ)

=
θ − αβ

2θ2 − (2α + 2β − 1)θ + αβ
.

It has the necessary properties: (a) Q = 0 if and only if A and B are
independent; (b) Q = 1 if and only if A ⊂ B or B ⊂ A; (c) Q = −1 if and
only if A ⊂ Bc or Bc ⊂ A. Finally, −1 ≤ Q ≤ 1. In the case of Sheffield’s
epidemic, we have Q = 0.902299648.

We define the function

Qα,β(θ) =
θ − αβ

2θ2 − (2α + 2β − 1)θ + αβ
, θ ∈ I(α, β),

which produces Yule’s Q (see Figure 7).

Remark 4.1.1 There are infinitely many functions of the form h(θ) = f(θ)−g(θ)
f(θ)+g(θ)

with the properties (a), (b), (c), and −1 ≤ h(θ) ≤ 1, defined on the interval
I(α, β), (α, β) ∈ (0, 1)2. For example, there exist infinitely many pairs of
cubic polynomials f(θ) and g(θ) which work.

4.2 Obreshkoff’s Measures of Dependence

The properties of the copula δ are also discussed by N. Obreshkoff in his
textbook [5, Chapter 3,§6] and in [3]. In particular, the relation Pr(B|A) =
Pr(B) + δ

Pr(A)
shows that ”... the probability of one of these events increases

under the condition that the other comes true in case δ > 0 and decreases in
case δ < 0”. Moreover, −δ = Pr(A ∩Bc)− Pr(A) Pr(Bc).

The number

ρ(B;A) = Pr(B|A)− Pr(B|Ac) =
θ − αβ
α(1− α)

is called coefficient of regression of B with respect to A. It measures the
influence of A on B. We have −1 ≤ ρ(B;A) ≤ 1.

It has the following properties: (a) ρ(B;A) = 0 if and only if A and B are
independent, (b) ρ(B;A) = 1 if and only if A = B, (c) ρ(B;A) = −1 if and
only if Ac = B.
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In the above example of small-pox epidemic at Sheffield we have ρ(B;A) =
0.44819565.

We define the functions

ρα;β(θ) =
θ − αβ
α(1− α)

, ρβ;α(θ) =
θ − αβ
β(1− β)

, θ ∈ I(α, β),

which produce the corresponding coefficients of regression (see Figures 4 and
5).

The numbers ρ(B;A) and ρ(A;B) have the same sign and, in general, are
not equal. Their geometric mean

R(A,B) = ±
√
ρ(A;B)ρ(B;A) =

θ − αβ√
αβ(1− α)(1− β)

,

where ± is chosen to be the common sign of ρ(B;A) and ρ(A;B), is said
to be coefficient of correlation between A and B. This coefficient has the
above properties (a) — (c). In the case of Sheffield’s epidemic we have
R(A,B) = 0.4791876.

We define the function

Rα;β(θ) =
θ − αβ√

αβ(1− α)(1− β)
, θ ∈ I(α, β),

which produces the corresponding coefficient of correlation (see Figure 6).

5 Conclusions

This paper presents an original approach to the problem of measuring the
degree of dependence of two events A and B in a probability space. It
uses the only reliable way of evaluation of the power of relations between
these events, borrowed from statistical physics and information theory: this
is the utilization of Boltzmann-Shannon entropy. More precisely, we start
with the joint experiment assembled by the two binary trials A ∪ Ac and
B ∪ Bc. The four probabilities of results of this experiment constitute a
variable probability distribution and satisfy a simple linear system whose
general solution (ξ1, ξ2, ξ3, ξ4) depends on one parameter θ (the probability
of intersection A ∩ B). Note that due to the natural constraints on ξk,
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k = 1, 2, 3, 4, θ varies throughout a closed interval I(α, β), where α = Pr(A)
and β = Pr(B). We modify naturally the entropy function of the distribu-
tion (ξ1(θ), ξ2(θ), ξ3(θ), ξ4(θ)) and obtain the degree of dependence function
eα,β(θ) : I(α, β) → [−1, 1]. By definition, if θ = Pr(A ∩ B), then eα,β(θ)
measures the intensity of relations between A and B.

Our degree of dependence is still within the probation period. In its defence
it may be said that evaluates the mutual information which is exchanged
between the random objects A and B and, moreover, does not depend on
the choice of unit of information. It also reflects plausibly the behaviour
of a screening test or impact of a vaccination on the survival of a person.
The function eα,β(θ) can also be used for measuring the effectiveness of a
drug or medical treatment, the association of adverse events with use of
some particular drug, the association of certain events with the stock market
prices, etc.

6 Figures and Tables
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B Bc Total
A 3951 200 4151
Ac 278 274 552

Total 4229 474 4703

Table 1

In all graphs below we use Sheffield’s sample data.

Figure 2

Graph of the entropy function Eα,β(θ)
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Figure 3

Graph of the degree function eα,β(θ)

Figure 4

Comparison of the graphs of eα,β(θ) and ρβ;α(θ)

Figure 5

Comparison of the graphs of eα,β(θ) and ρα;β(θ)

17

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2021                   doi:10.20944/preprints202106.0100.v2

https://doi.org/10.20944/preprints202106.0100.v2


Figure 6

Comparison of the graphs of eα,β(θ) and Rα;β(θ)

Figure 7

Comparison of the graphs of eα,β(θ) and Qα,β(θ)
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