Preprint
Article

Covid-19: Why Herd Immunity was not Approached Anywhere? Ultrametric Diffusion Modeling of Virus Spread in Hierarchically Clustered Population

Altmetrics

Downloads

326

Views

318

Comments

0

This version is not peer-reviewed

Submitted:

06 June 2021

Posted:

07 June 2021

You are already at the latest version

Alerts
Abstract
In spite of numerous predictions, the natural herd immunity for covid-19 visru had not been approahed anywhere in the world. Thus, the traditional mathematical models of disease spread demonstrated their inability to describe adequately the covid-19 pandemic. In author's works, the novel model of the disease spread was developed. This model reflects the basic features of the covid-19 pandemic: a) the social clustering character of virus spread, b) . Social clustering is mathematically modelled with ultrametric spaces having the treelike geometry encoding hierarchy of the regulation constraints. The virus spread is described by ultrametric diffusion or random walk on the hierarchic energy landscape. In contrast to the standard models which are characterized by the exponential decrease of the probability to become infected - at the stage of approaching of the herd immunity, the ultrametric model is characterized by the power law. Moreover, the model gives the possibility to quantify the influence of restriction measures up to the lockdown. Our main result is that the play with restrictions, including lockdowns, is counterproductive and leads to the essential slowdown of approaching the herd immunity or even makes this impossible.
Keywords: 
Subject: Medicine and Pharmacology  -   Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated