Preprint
Article

On the Importance of Gauge-Undercatch Correction Factors and Their Impacts on the Global Precipitation Estimates

Altmetrics

Downloads

521

Views

538

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

05 June 2021

Posted:

07 June 2021

You are already at the latest version

Alerts
Abstract
Precipitation gauges are critical for measuring precipitation rates at regional and global scales and are often used to calibrate precipitation rates estimated from other instruments such as satellites. However, precipitation measured at the gauges is affected by gauge-undercatch that is often larger for solid precipitation. In the present work, two popular gauge-undercatch correction factors are assessed: one utilizes a dynamic correction model and is used in the Global Precipitation Climatology Centre (GPCC) Monitoring product and the other one employs a fixed climatology and is used in the Global Precipitation Climatology Project (GPCP) product. How much the choice of correction factors can impact the total estimate of precipitation was quantified over land at seasonal, annual, regional, and global scales. The correction factors are also compared as a function of the environmental variables used in their development, among those are near-surface air temperature, relative humidity, wind speed, elevation, and precipitation intensity. Results show that correction factors can increase the annual precipitation rate based on the gauges by ~9.5 % over the global land (excluding Antarctica), although this amount can vary from ~6.3% (in boreal summer) to more than 10% (in boreal winter), depending on the season and the method used for gauge-undercatch correction. Annual variations of correction factors can also be large, so the use of the fixed climatology correction factors requires caution. Given their magnitudes and differences, selection of appropriate correction factors can have important implications in refining the water and energy budget calculations.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated