In this article, the usual factorials and binomial coefficients have been generalized and extended to the negative integers. Basing on this generalization and extension, a new kind of polynomials has been proposed, which led directly to the non-classical hypergeometric orthogonal polynomials and the non-classical second-order hypergeometric linear DEs. The resulting polynomials can be used in non-relativistic and relativistic QM, particularly, in the case of the Schrödinger equation, and Dirac equations for an electron in a Coulomb potential field.
Keywords:
Subject: Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.