We report a self-assembly synthesis of silicon nanoparticles/nitrogen-doped reduced graphene oxide/ carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for rechargeable lithium-ion batteries (LIB) through the electrostatic attraction between amino and carboxyl groups. Nitrogen atoms generate a large number of vacancies or defects on the graphite plane, providing additional transmission channels for the diffusion of lithium ions, and improving the conductivity of the electrode. Carbon nanofiber (CNF) can help maintain the stability of the electrode structure and prevent silicon nanoparticles from falling off the electrode, prevent silicon nanoparticles from being directly exposed to the electrolyte, and can form a stable solid electrolyte interface (SEI) film. The three-dimensional conductive structure composed of Si, nitrogen atom-doped reduced graphene oxide (N-doped rGO), and CNF can effectively buffer the volume changes of silicon nanoparticles, shorten the transmission distance of lithium ions (Li+) and electrons, and make the electrode have good conductivity and stability in mechanical properties. In addition, compared with the Si@N-doped rGO and Si/rGO/CNF composite electrode, the Si@N-doped rGO/CNF composite electrode shows good cycle performance and rate capability, and its reversible specific capacity can reach 1418.8 mAh/g. The capacity retention rate is 64.7%, and the coulomb efficiency is 95%.