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Abstract: There are given algebraic and integral identities for a pair or a triple of plane solenoidal fields.
As applications, we obtain sufficient potentiality conditions for a plane vector field. The integral identities
are also important for exact a priori estimates.
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Key Contribution: There are given some constructions of a plane potential field with an application of
one or two solenoidal fields.

0. Introduction

The well-known classical Helmholtz result connected with decomposition of a vector field by a sum
of solenoidal and potential components admits an generalization. This is known as Helmholtz-Weyl
decomposition (see, for example,[1]). A more exactly, Lebesgue space Ly(R") of vector fields u =
(u1,...,uy) has decomposition

Lo(R") = Hy(R") & Gy(R")

where H(R") is a closure of all smooth solenoidal fields and G,(R") is a closure of all smooth potential
fields with respect to the norm of space Ly(R"). In [2], [3] and [4] for different dimensions it is noted that
Hj)(R™) can be consider as a closure of all smooth finite solenoidal fields. We mark that to replace space R”"
onto a domain Q) # R" it is impossible (see,[5]). By the way, some conditions for these replacements can
be found in [6].

Helmholtz—-Weyl decomposition implies integral identity:

/Rnwgdx:O 1)

for any fields u € Hp(R") and g € Gp(R"), which gives a key for studying of the Navier-Stokes equations.
In principle, different results connected with integral identities for solenoidal fields in space were obtained
in [7]. For another dimensions there are extended in [8], [9].

But applying the curle of a solenoidal field and new integral identites (see [10]) there was managed
to emphasize a distinction in properties of plane and spatial solenoidal fields. For the first time this idea
there was considered in [11]. Various examples of flows in space confirm a poorness of plane—parallel
fluids in the comparison with spatial fluids.

The main goal of this work is to give new integral identities for plane solenoidal fields. These
identities can be considered as an origin of new a priori estimates (see, for example,[10]), as an origin of
new conservation laws which can be connected with an initial data in the Cauchy problem. As a corollary
we have sufficient conditions for the field to be a potential field on a plane. These integral identities we can
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consider as elements of latent symmetry. Hydrodynamics is very rich by such elements (see, for example,
the important review [12]). Therefore, the comparison of different symmetry applications is very useful in
this way.

0.1. Notations
Letu: R> — R?, u = (uy,uz), be an arbitrary vector field. Symbols

auk azuk
Uy : = L, U =
ki ax; ki ij axiaxj

so forth mean a partial differentiation or differentiation in distributions. They are also noted by another
symbol
D%y,

where & = (1, 27) is a multi-index of a partial derivative. Naturally A is the Laplace operator. Below if I
don’t mark separately the repeated lower indices 7, j, k, m mean summation there, where they change. For
example,

2

Uj jmuk, imuk,j = Z uj, jmuk, imuk,j/
i,jmk=1

2
uiuk,iAuk = Z uiuk/iAuk
ik=1

and etc. Further, rotor coordinates are noted by
cri(1) = upi — Uik

and there are interpreted as elements of a skew-symmetric matrix C of the second order.
As usually, a finite field vanishes out of a some disk.

1. Main results

For simplicity, we will confine ourselves to the formulation of the main results for the entire plane
and smooth fields. The main results are described by Theorem 1 and Theorem 2. Their proof relies on
Lemma 1 and Lemma 2. These simple lemmas may be interesting as separate statements.

Lemma 1. For every three smooth solenoidal plane fields u, v, w the following algebraic identities are true:

wj, jU, ik, j T Ui, jW, iV, j = 0, (2)

Wi, jmU, imVk, j + Wi, jmWk, imVk, j = 0, ®3)

Ui, jmUk, imWk, j = 0, 4)

D"‘ui/ ij"‘uk, imDﬁwk,j =0, 5)

D'XZUZ” ijﬁuk, imD’y?Jk’]’ + Dﬁui, ij”‘uk, imD,Yvk,j =0. (6)

In particular,
A, jug, iDug j+ u; jAug iAug j =0, 7)
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Ui, jik, imUk, jm = 0. 8)
Proof of Lemma 1. Grouping of terms in (2) implies to equality
Wi, jU, iVk, j + Wi, jWk, iUk, j =

= 2(uy, 101, 1wy, 1 F Uy, 20 2 Wy, 2) + (1, y Wy 1 + Uy 10y ) divO+
(01,21, 5 + Vg 1 Wy 1 )divu + (4 0y 5 + Uy 10y, 1 )divW.

Hence, we have the first equality of lemma because u; ; = —u, , and etc.

Fix m. Replacements u onto u ,, w onto w, in (2) imply (3) after summation with respect to m.
Taking in (3) w = u and replacing v by w we have (4).

Replacements u onto D*u, w onto DPwin (4) give (5). Formula (6) follows from (2) since fields
W m, U m, D*w, DPu, D70 are solenoidal. Identity (7)is corollary of (2). Equality (8) is verified by the
same way. It is sufficient to group

Ui, j1Uk, imUk, jm1 = (U1, 1101, 1m W1, 1l + U2, 202, 1m W2, 2m1) + (U2, 11041, 2m U1, 11 + U1, 2142, 1m U2, 2m1) +

(141, 111, 1mU1, 2m1 + U, 2141, 2m U1, 2m1) + (U1, 171U, 1m0, 11 + U, 1142, 2mU2, 1m1)-

Here, every sum in brackets vanishes.
Lemma is proved. [

Lemma 2. For every pair of smooth finite solenoidal plane fields u, w the following integral identities are true:

/R2 Wi, jmU, imU, jdx =0 ©)
/R2 Ui, jmW, imU, jdx =0, (10)
/R2 Auj jug, ik, jmdx = 0, 11)
/R2 Dﬁwi, jmD g, im D uy jdx =0, (12)
/RZ D*u; ijﬁwk, imD"ug, jdx =0, (13)
/RZ U, jiuk, iUk, jmdx = 0. (14)

Proof of Lemma 2. For the second integral we exchange summation indices j and m. Then
2 /RZ Wi, jmUk, imuk,jdx = /R2 Wi, jm Uk, imuk,jdx + /RZ Wi, jmUk, ijUk, mdx =

= /R2 Wi, jm (U, mUi, ) ,i4% = — /R2 divw, jy, (ug, iy, j)dx = 0.

Equality (9) is proved.
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Replace in (9) w onto u. After that we replace u onto u + tw, where ¢ is an arbitrary number. Then

/RZ(W, jin - EW0; ) (W i+ EW) i) (U, + twy, j)dx =0

for any t. Therefore, the coefficient at the first power t vanishes that is

/Rz(wi, jmbk, imYk, j Ui, jm @k, imYk, j + Ui, jmb, imWk, )% = 0.

Therefore, from (9) and (3) it follows (10). Now in (9) we take w = Au. Integrating by parts we obtain
(11) from (2) where we choose w = Au, v = u and u in (2) is replaced by Au.

Ifin (9) and (10) we replace w onto DBw, u onto D*u, then we get (12) and (13). Formula (14)
follows immediately from (11) and (8) since

/R2 Auj juk, iU, jmdx = — /RZ(”i, Ik, iUk, jm Wi, jIUk, im Y, jml)AX-
Lemma is proved. O

Remark 1. The integral identity (9) is true for spatial solenoidal fields where the integral over plane must be
replaced by the integral over whole space.

Theorem 1. Let u, v be a pair of smooth solenoidal plane fields and one of them is finite. Then
1) a vector field g' = (g1, g3) where

8k = i, kAU + g kj0;, |+ g, 10 i, k= 1,2, (15)

is potential;
2) a vector field g* = (g2, g3) where

8k = g, 180 + v (Auj + ug j0;, i, o 5, k=1,2, (16)

is potential;
3) a vector field g° = (g3, 3) where

g = u; Ao, + uj, jcki, j(v), k=1,2, 17)

is potential;
4) a vector field g* = (g7, 83) where

8t = k() Avi + ci(v) Ay, k=12, (18)
is potential.

Proof of Theorem 1. Equality (2) we integrate over entire plane and apply integration formula by parts
removing derivatives of the field w. Then

/Rz (wi(ug, i Avg + ug, ijx, 1) + Wi, oy, i7)dx = 0. (19)
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Now, in the first sum we exchange summation indices i, k . Hence,
/R2 Wi (u, KAV + U; 1j0;, j + U, jUx, ij)dx =0

for every smooth solenoidal field w. In the fact, we have the identity similar (1). Therefore, from
Helmholtz-Weyl decomposition it follows that the vector field ¢! = (g1, g3) defining by (15) is potential.

Equality (2) we integrate again and apply integration formula by parts removing derivatives of the
field v. Then we have the following equality:

/R2 Ok (g, 1 Aw; + g jjw; j + wj jwy, i + Wy, Aug)dx = 0.
Exchanging fields v and w we get
/RZ wk(uk, iAvi + Uy, ij0i, j + uj, i, ij + 43 l-Aui)dx =0 (20)

for every smooth solenoidal field w. Hence, from Helmholtz-Weyl decomposition vector field g = (g%, $3)
defining by (16) is potential.
The field from (17) is also potential. It follows from equality

811 = 81% + (i, joi, ) k=1,2,

and the fact that the field g! is potential.
Now, we suppose that a solenoidal field w is smooth and finite. Then (see Theorem 2 from [10]) we
have

/R2 wicki(u) Augdx =0, (21)

Let us replace in (21) the field u onto the field u + tv, where v is an arbitrary smooth solenoidal field and ¢
is any number.Then

/R2 wicki (1 + t0) (A(ug + tog)dx =0

for every t. Therefore, a coefficient at the first power f must equal to zero. That is
/Rz w; (ki (u) Avg + ci(v) Aug)dx = 0

for any smooth solenoidal field w. Then from Helmholtz-Weyl decomposition the vector field g* = ( g‘ll, g3)
defining by formula (18) is potential. Theorem is proved. [J

Theorem 2. Let u be a smooth solenoidal plane field. Then
1) a vector field g = (g3, 43) where

5
Sp = Uy, Z-]-Aui,j + uj, jmuk, ijms k= 1,2,

is potential;
2) a vector field g° = (g%, 45), where

g% = DP(D"uy iy AD u;, j + D"t joy D"ty jjoy), k = 1,2,

is potential;
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3) a vector field g7 = (g7, g%), where
g = DP(D*uy, ;D7(Av;) + D*uy, 3D 7v; j+ Du;, D70y i + Do ;DT (Auy)), k = 1,2,
is potential.

Proof of Theorem 2. Let w be a smooth solenoidal finite field. In equality (10) it follows to fulfill
reiterated integration by parts removing derivatives of the vector field w. Then repeating arguments from
proof of Theorem 1 we have necessary statement. The second part we obtain from (13). Potentiality of the
field g7 it follows immediately from (20) if we replace w onto DPw, u onto D*u, v onto DYv. Theorem is
proved. 0O

Remark 2. Integral identities with two solenoidal fields may be very useful for conservation laws because we can
take into account an initial velocity in the Cauchy problem for Navier—Stokes equations.

Remark 3. Choosing multi-indices « and B and applying item 3) from Theorem 2 we can construct diverse potential
fields summing over a and p.

2. Conclusions

There are shown new algebraic and integral identities for plane solenoidal vector fields. Applying
them there are offered constructions of a potential field with applications of two solenoidal plane fields.
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