An embryonic version of membrane theory can be date back to the Bernstein's work reported more than a hundred years ago. Such an originally old work has evolved conceptually and mathematically up until today, and it plays a central role in current membrane theory. Goldman-Hodgkin-Katz equation (GHK eq.) is one of the math-based monumental works, which constitutes the present membrane theory. Goldman theoretically derived GHK eq., but its physiological meaning was provided by the two renowned scientists, Hodgkin and Katz. These two employed an assumption that the electric field (EF) across the plasma membrane is constant to validate the GHK eq. physiologically. Proposal of Hodgkin-Huxley model (HH model) is another math-based monumental works developed from the membrane theory and now forms a fundamental part of the current membrane theory. GHK eq. and HH model are quite fundamental central concepts in the current physiology. Despite the broad acceptance of GHK eq. at present time, its prerequisite that the EF within the plasma membrane is constant is hardly believable. Especially when the action potential is generated, it sounds totally nonsense. Furthermore, the existence of constant EF within the plasma membrane is conceptually almost in conflict with the HH model. The authors will discuss those problematic issues the membrane theory inherits.
Keywords:
Subject: Computer Science and Mathematics - Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.