Preprint
Article

Fighting the COVID-19 Infodemic in News articles and False Publications: The NeoNet Text Classifier, a Supervised Machine Learning Algorithm

Altmetrics

Downloads

779

Views

1288

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

24 July 2021

Posted:

26 July 2021

You are already at the latest version

Alerts
Abstract
The spread of the Coronavirus pandemic has been accompanied by an infodemic. The false information that is embedded in the infodemic affects people’s ability to have access to safety information and follow proper procedures to mitigate the risks. This research aims to target the falsehood part of the infodemic, which prominently proliferates in news articles and false medical publications. Here, we present NeoNet, a novel supervised machine learning text mining algorithm that analyzes the content of a document (news article, a medical publication) and assigns a label to it. The algorithm is trained by TFIDF bigram features which contribute a network training model. The algorithm is tested on two different real-world datasets from the CBC news network and Covid-19 publications. In five different fold comparisons, the algorithm predicted a label of an article with a precision of 97-99 %. When compared with prominent algorithms such as Neural Networks, SVM, and Random Forests NeoNet surpassed them. The analysis highlighted the promise of NeoNet in detecting disputed online contents which may contribute negatively to the COVID-19 pandemic.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated