Preprint
Concept Paper

The Oxygen Transport Triad in High Altitude Pulmonary Edema: a Perspective from the High Andes

Altmetrics

Downloads

239

Views

259

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

16 June 2021

Posted:

18 June 2021

You are already at the latest version

Alerts
Abstract
Acute high altitude illnesses are of great concern for physicians and people traveling to high altitude. High Altitude Pulmonary Edema (HAPE) can be better understood through the Oxygen Transport Triad which involves the Pneumo-Dynamic Pump (Ventilation), the Hemo-Dynamic Pump (Heart and circulation), and Hemoglobin. The two pumps are the first physiologic response upon initial exposure to hypobaric hypoxia. Hemoglobin is the balancing energy-saving time-evolving equilibrating factor. The increased hemoglobin at high altitude reduces the percentage of dissolved oxygen in the arterial oxygen content with respect to sea level. At high altitude, the acid-base balance must be adequately interpreted using the high altitude Van-Slyke correction factors. Pulse-oximetry measurements during breath-holding at high altitude allow for the evaluation of high altitude diseases. The Tolerance to Hypoxia Formula shows that, paradoxically, the higher the altitude the more tolerance to hypoxia. All organisms adapt physiologically and optimally to a high-altitude environment to survive. Reduction of pulmonary hypertension in HAPE through oxygen administration results in a favorable outcome.
Keywords: 
Subject: Medicine and Pharmacology  -   Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated