Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2021

New results on the (SSIE) with operator of the
form Fa C & + F. involving the spaces of
strongly summable and convergent sequences by
the Cesaro method

Bruno de Malafosse
Université du Havre. France
E-mail:;” bdemalaf@wanadoo.fr”.

June 21, 2021

Abstract

Given any sequence a = (an)n>1 of positive real numbers and any set £
of complex sequences, we write E, for the set of all sequences y = (yn)n>1
such that y/a = (yn/an)n>1 € E. In this paper, we use the spaces Woo, Wo
and w of strongly bounded, summable to zero and summable sequences,
that are the sets of all sequences y such that (n™' 3_)_, |yk|)n is bounded,
tends to zero and such that y — le € wg, for some scalar [, respectively,
(cf. [24, 22]). These sets where used in the statistical convergence, (cf.
[17, Chapter 4]). Then we deal with the solvability of each of the (SSIE)
Fa C € + F, where £ is a linear space of sequences, F' = ¢, ¢, {oo, Wo,
W, or Weo and F’ = co, ¢, or fo. For instance, the solvability of the
(SSIE) wa C wo+ st consists in determining the set of all sequences z =
(Tn),>1 € U™ that satisfy the following statement. For every sequence y
that satisfy the condition lim,— oo n™" 3 1_; [yk — Yx—1 — {| = 0, there are
two sequences u and v, with y = u+v such that limy oo n™ ' > p_, |uk| =
0 and limp— o0 (vn/xn) = L for some scalars [ and L. These results extend
those stated in [11, 12, 10].

Key words: BK space, matrix transformations, multiplier of sequence
spaces, sequence spaces inclusion equations.
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1 Introduction

We write w for the set of all complex sequences ¥y = (yg)r>1, Yoo, ¢ and coy
for the sets of all bounded, convergent and null sequences, respectively, also
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P ={ycw:Y o lyl’ <oo} for 1 < p < oo Ify, z €w, then we write
Yz = (Yn2n)psy- Let U ={ycw:y, #0}, UT ={y €w:y, >0}. We write
z/u = (2n/un), >, for all z € w and all v € U, in particular 1/u = e/u, where
e is the sequence with e,, = 1 for all n. Finally, if a € U" and E is any subset
of w, then we put B, = (1/a) '« E = {y €w:y/a € E}. Let E and F be
subsets of w. In [4], the sets 54, s0 and s((lc) were defined for positive sequences
a by (1/a)_1 x F and E = {, ¢y and ¢, respectively. In [6] we defined the
sum FE, + F; and the product E, x F} were defined where E, F' are any of the
symbols s, s°, or s(°). Recall that the spaces woo and wy of strongly bounded
and summable to zero sequences by the Cesaro method, are the sets of all y such
that (n=! Y, |yk|)n is bounded and tend to zero respectively. In this way,
Hardy and Littlewood [22], defined the set w of strongly convergent sequences
by the Cesaro method, for real numbers as follows. A sequence y is said to be
strongly Cesaro convergent to L, if y — Le € wg. These spaces were studied
by Maddox [24], Malkowsky, Rakocevié [27] and Malkowsky, Bagar in [2]. In
[13, 8, 21, 15] we gave some properties of well known operators defined by the
sets W, = (1/a)"" * weo and WO = (1/a)”" % wy. In this paper, we deal with
special sequence spaces inclusion equations (SSIE), which are determined by
an inclusion, for which each term is a sum or a sum of products of sets of the
form (Eq)p and( Ef(w))T where f maps U™ to itself, E is any linear space of
sequences and T is a triangle, (cf. [12, 11, 10, 17]). Some results on the (SSIE)
were stated in [16, 11, 12, 10], the results stated in [11], [12] and [10], were put
together in [17]. In [11] we dealt with the class of (SSIE) of the form F C E,+F,
where F' € {cp, P, wp, ws } and E, F' are any of the sets cg, ¢, s1, £, wyg, Or W
with p > 1. Then we stated some results on the solvability of the corresponding
(SSIE) in the particular case when a = (r™),, and we dealt with the case when
F = F’. In [12] we dealt with the (SSIE) of the form F C E, + F, withe € F
and we determined the solutions of these (SSIE) when a = ("), <, F' is either
¢, or s; and E, F/ are any of the sets cg, ¢, s1, £P, wp, Or We, With p > 1. Then
we solved each of the (SSIE) ¢ C D, x Ea + ¢, with E € {co, ¢, s1}, and the
(SSIE) 51 C Dy *(s1) 5 + 5z We also studied the (SSIE) ¢ C D, xE¢, +58 with
E € {¢,s1} and 51 C D, % (81)01 + s, where (' is the Cesaro operator defined
by (C1),,y = n~ 'Y p_, yx for all y, and we dealt with the solvability of the

(SSE) associated with the previous (SSIE) and defined by D, x E¢, + s =c
with E € {cg,¢,s1} and D, * E¢, + s, = s1 with E € {¢,s1}. In [10] we dealt
with the solvability of the (SSIE) of the form ¢, C £ + F,, where £ is a given
linear space of sequences and F” is either cg, or £,. Then, for given linear space
& of sequences, we solved each of the (SSIE) ¢g C £ + s, and ¢ C £ + &9 and
the (SSE) € + s{” = c.

In this paper, we use the difference sequence spaces (co)a, ca and (£oo) A
introduced by Kizmaz, (cf. [23]) and we deal with the solvability of each of the
(SSIE)

FA C £+ F;,

where F = cg, ¢, {oo, Wo, Weo, O w, and F’' = cq, ¢, or o and & is a linear
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space of sequences.

This paper is organized as follows. In Section 2, we recall some well known
results on sequence spaces and matrix transformations. In Section 3, we recall
some results on the multipliers of some sets. In Section 4, we recall some results
used for the solvability of the (SSIE). In Section 5, we deal with the solvability
of the (SSIE) with operator to solve each of the (SSIE) of the form ca C £+ F),
(co)p CE+F, and ({og)p C € + F,, with F' = ¢, ¢, or £os. In Section 6, we
study each of the (SSIE) (wx), C € + F,, where F' = ¢, ¢, or . Finally, in
Section 7, we study the solvability of the (SSIE) Fa C € + F, where F = wy,
or w and F' = ¢g, ¢, or £.

2 Preliminaries and notations

An FK space is a complete metric space, for which convergence implies coordi-
natewise convergence. A BK space is a Banach space of sequences that is, an FK
space. A BK space E is said to have AK if for every sequence y = (yx)k>1 € E,
then y = limy, ,o0 > vy yre®  where e®) = (0,...,1,...), 1 being in the k — th
position.

For a given infinite matrix A = (ank)n,k>1 we define the operators A4, =
(ank)p>1 for any integer n > 1, by A,y = > 32 ankyk, where y = (yp)i>1,
and the series are assumed convergent for all n. So we are led to the study of
the operator A defined by Ay = (A,y),~, mapping between sequence spaces.
When A maps E into F, where E and F are subsets of w, we write A €
(E,F), (cf. [24, 3, 30, 26]). It is well known that if E has AK then, the
set B(E) of all bounded linear operators L mapping in E, with norm ||L| =
sup, o (1L (Y)l g / llyllg) satisfies the identity B (FE) = (E, E). We denote by
w, Cp, ¢, Lo, the sets of all sequences, the sets of null, convergent and bounded
sequences. For any subset F of w, we write F4 = {y € w : Ay € F} and for any
subset F of w we write AE = {y € w : there is € E such that y = Az}. Then,
for given sequence u € w we define the diagonal matrix D, by [D,],,,, = u, for all
n. It is interesting to rewrite the set F, using a diagonal matrix. Let F be any
subset of w and u € U we have E,, = Dy, E = {y = (yn)n>1 Ew :y/u € E}.

We use the sets s, s¢9 and s, defined as follows (cf. [4, 5]). For givena € U™ we
put Dy*co = 8%, Dy*c = sff) and Dl = s,. We frequently write ¢, instead
of 589 to simplify. Each of the spaces D, * E, where E € {cg,¢,fo} is a BK
space normed by |[y||, = sup,>, ([yn| /an) and s) has AK. If a = (R"),>1 with

R > 0, then we write sg, s% and sg), for the sets s,, s0 and s,(f), respectively.

We also write D for D(gn) _ . When R =1, we obtain s; = lc, s{ = ¢p and

s§0> = ¢. Recall that Sy = (s1,s1) is a Banach algebra and (co, s1) = (¢,40) =
(s1,s1) = S1. We have A € Sy if and only if sup,, (3_p—; |ank|) < co. Recall
the Schur’s result (cf. [30, Theorem 1.17.8, p. 15]) on the class (s1,¢). We have
A € (s1,c¢) if and only if lim,, o ay, = li for some scalar Iy, k = 1, 2,..., and
limy, o0 D opeq |@nk] = D pey |lk|, where the series Y77, |lx| is convergent.

We also use the following two lemmas, where the infinite matrix 7 is said
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to be a triangle if T, = 0 for k > n and 7,, # 0 for all n.

Lemma 1 [7, Lemma 9, p. /5] Let T' and T" be any given triangles and let
E, F C w. Then, for any given operator T represented by a triangle we have
T € (Eg/, Frv) if and only if T"TT ~' € (E, F).

Taking 7" = Dy, and T" = Dy, for a, b € Ut we obtain the next well-known
result.

Lemma 2 Let a, b € UT and let E, F C w be any linear spaces. We have
A € (Eq, Fy) if and only if Dy,,AD, € (E, F).

3 On the triangle C' ()\) and on the multipliers of
special sets

In this section, we define the spaces of strongly bounded and summable sequences
by the Cesaro method. Then we recall some results on the multipliers of sequence
spaces involving the previous spaces.

3.1 On the triangles C'(\) and A ()\) and the sets wy, w and
Weo-

For A € U the infinite matrices C' (A\) and A () are triangles defined as follows.
We have [C' ()], = 1/, for k < n, this triangle was used, for instance in [20,
18], see also the Rhaly matrix studied by [28, 29]). Then, the nonzero entries
of A () are determined by [A (A)],,,, = A, for all n, and [A (V)] ,,_; = —An—1
for all n > 2. It can be shown that the matrix A ()) is the inverse of C ()),
that is, C(A) (A (N y) = AN (C(N)y) =y for all y € w. If A = e we obtain
the well known operator of the first difference represented by A (e¢) = A. We
then have A,y = y, — yn—1 for all n > 1, with the convention yo = 0. We
have ¥ = C (e) and then, we may write C' () = D;,,X. Note that A = X1
The Cesdaro operator is defined by C; = C ((n)n>1) . In the following, we
use the inverse of C; defined by C;' = A(\) where A\ = (n),~,. We use
the set of sequences that are a—strongly bounded and a—strongly convergent
to zero, defined for a € UT by W, = {y € w:sup, (n™' Y p_; yk| /ar) < oo},
and W2 = {y € w: lim,00 (71 35_; lysl /ar) = 0}, (cf. [21, 15]). For a =
(r"),,>, the set W, and W2 are denoted by W, and W,. For r = 1 we obtain the

well-known spaces ws, and wqg of strongly bounded and strongly null sequences
by the Cesaro method (cf. [25]).

3.2 On the multipliers of some sets.

First, we need to recall some well known results. Let y and z be sequences and let
E and F be two subsets of w, we then write M (E,F) = {y €w: yz € F for all z € E},
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the set M (E, F) is called the multiplier space of E and F. We will use the
next lemmas.

Lemma 3 Let E, E, F and F be arbitrary subsets of w. Then (i) M (E,F) C
M (E F) for all EC E. (ii) M (E,F) C M (E ﬁ) for all F C F.

Lemma 4 Leta, b€ Ut and let E and F be two subsets of w. Then we have
D,+E CDyxF if and only if a/b € M (E, F).

From Lemma 2 we obtain the next result.
Lemma 5 [??, Corollary 3.2, p. /4] Let a, b € UT. Then we have: (i)
M (s,X}) = sp/a where X' is any of the symbols s°, 509 ors. (i) M (Xa,Sp) =
Sp/q where X is any of the symbols s, ors. (iii) M (sa,sl()c)> =M (sa,sg) =

sg/a and M <s((f),s£c)> = Sz(;;)a'

In the following, we use the results stated below, (cf. [11, Lemma 6, pp.
214-215)).

Lemma 6 We have: (i) (a) M (c,co) = M (boo,¢) = M (boo,c0) = co and
M (c,c) =c. (b)) M (E,lx) =M (co,F) =L for E, F =cq, ¢, or los. (i) (a)
M (Weo, loc) = M (wo, F) = 8(1/ny, ., for F'=co, ¢, or log. (b) M (oo, o) =
M (weo,¢) = 8?1/n)n>1' (¢) M (E,wo) = wo for E = sy, orc. (d) M (E,ws) =
Weo for B = cgy, $1, or c.

To state results on the multipliers involving the set w, we need the next
elementary lemmas.

Lemma 7 We have w C s(()n) L

Proof. Let y € w. Then, by the inequality n™" |y, — | < n™'>°0_, |yx — |
for some scalar [ and for all n, we deduce n=! |y, — | — 0 (n — 00), and since
n U yn| <n7y, — 1| +n71|l] we conclude y € s(()n) _ andw C s?n) - =

Lemma 8 We have M (w, ) = M (w,c) = M (w,co) = S(1/n) -

Proof. By Lemma 7, we have M (s?n) >1,Co) C M (w, co) and by Part (i) of
Lemma 5 we have S(1/n)nsy = M (5(()")7L21’CO> C M (w,¢p). Then, using Part

(ii) (a) of Lemma 6, we conclude

S(1/n),s, C M (w,c0) € M (w,¢) C M (w,lo) C M (wo,loc) = 5(1/n)

n>1"’

This completes the proof. m

Remark 9 By [14, Remark 3.4] we have M (wg, Weo) = M (Weo, Weo) = oo
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4 On the sequence spaces inclusions.

In this section, we are interested in the study of the set of all positive sequences
x that satisfy the inclusion F' C £ 4+ F, where £, F and F’ are linear spaces of
sequences. We may consider this problem as a perturbation problem. If we know
the set M (F, F'), then the solutions of the elementary inclusion F. O F are
determined by 1/x € M (F, F'). Now, the question is: let £ be a linear space
of sequences. What are the solutions of the perturbed inclusion F, + & D F ?
An additionnal question may be the following one: what are the conditions on
& under which the solutions of the elementary and the perturbed inclusions are
the same 7

4.1 Some definitions and results used for the solvability
of some (SSIE).

In the following, we use the notation Z (&, F,F') = {x e UT: F C &+ FL},
where £, F and F are linear spaces of sequences and a € U'. We can state the
next elementary results.

Lemma 10 Let &, &, F, F', F and F" be linear spaces of sequences. Then
we have: (i) If &1 C &, then (&1, F,F') C Z(E,FF'). (i) If F C F, then
I(E,F,F')CZ(E,F,F"). (iii) If F' C F", thenZ(E,F,F') CZ(E,F,F").

For any set y of sequences we let X = {x € UT : 1/x € x}. Then we write
D = {co, ¢, loo, Wo, W, Weo }. By ¢(1) we define the set of all sequences v € U™
that satisfy the condition lim,, ., s, = 1. Then we consider the condition

G C Gy forall aec(l), (1)

for any given linear space G of sequences. Notice that condition (1) is satisfied
for all G € ®. Then we denote by U;" the set of all sequences o with 0 < a,, < 1
for all n. We consider the condition

G C Gy for all a € U (2)

for any given linear space G of sequences. To show some results on the (SSIE),
we introduce a linear space of sequences H which contains the spaces E and F”’
and we will use the fact that if H satisfies the condition in (2) then we have
H, + H, = Hy,yp for all a, b € U™ (cf. [14, Proposition 5.1, pp. 599-600]).
Notice that ¢ does not satisfy this condition, but each of the sets cg, £so, €7, wo
and wy, satisfies the condition in (2). So we have for instance s + sj) = s2,,
and W, + Wy, = Wy 4p.

4.2 Some properties of the set Z (&, F, F’).

We need the next lemma involving the multiplier of F' and F’, which is an
extension of Lemma 10.
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Lemma 11 Let &, &, F, F and F' be linear spaces of sequences. Then

we have: (i) M (F,F") C Z(&,FF"). (ii) If T(&,F,F') C M(F,F"), for

any linear space of sequences € C &, then T(E,F,F') = M (F,F’"). (i)
IfT(E,F,F') C M(F,F"), for some linear space of sequences F C F, then
I(€,F,F') =M (F,F).

Proof. (i) Let x € M (F,F’). Then, we successively obtain 1/x € M (F, F"),
FCF,FCE&+F andze (& F F). Thisimplies M (F,F') C I(E,F,F')
and (i) holds. (ii) We have Z(E,F,F') C T (&, F,F') C M (F,F’) and we
conclude by (i) that Z (€, F,F') = M (F, F"). (iii) follows from the inclusions

M(F,FYCI(E,F,F)CI(EF,F)CM(FF). =

5 On the solvability of the (SSIE) with operator
of the form FA C £+ F., where F, I’ € {cy, ¢, (s}

In this section, we determine multipliers involving some difference sequence
spaces. Then we state a general result on the solvability of the (SSIE) with
operator Fa C £+ F., with e € F. Then we apply these results to solve each of
the (SSIE) ca C £+ F, and (co), C E+ F,, and ({s), C €+ F,, with F' = ¢,
¢, or £

5.1 On the multipliers of the form M (XA,Y) where X,
Y € {co, ¢, loo}-

In all that follows, for a € U, we use the triangle D,%, whose the nonzero
entries are defined by (DyX),,;, = a,, for k < n. We have (D,X), y = an > p—q Uk
for all y € w and for all n. This triangle is also called the Rhally matrix, (cf.
[28, 29]). We obtain some results on the multipliers involving the sets of the
difference sequence spaces (co) 5, ca and ({o) o introduced by Kizmaz, (cf. [23],
see also [1]), and stated in the next lemma.

Lemma 12 (i) M ((co)s,Y) = 8(1/n), ., whereY = co, c orloo. (i1) M (ca,co) =
iy, M (care) = sg)/n)n21andM (carlo) = S(1ymy, -, (i) M ((€oo) 5 »c0) =
M ((ew)A ,C) = s?l/n)n21 and M ((eoo)A Hoo) = S(1/n)p>y -

Proof. (i) follows from the proof of [9, Proposition 7.1 p. 95]. (ii) We have
a € M (ca,co) if and only if D,¥ € (c¢,¢9) and by the characterization of

(¢c,co) we have na, — 0 (n — o) and a € s?l/n)n>1. In the same way, we

have a € M (ca,c) if and only if DY € (c,c) and by the characterization
(e)
(1/n)pz1”
be obtain using similar arguments. (iii) We show M (({xo)r,€) C S(()l/n) o
n>1
For this, let a € M ((foc) ;¢). Then we have D3 € (¢, c) which implies
D,¥ € (c¢,c¢) and (nan)nZl € c¢. This implies lim, o a, = 0 and by the

of (¢,c) we obtain a € s The identity M (ca,loc) = S(1/m),., can
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Schur theorem we obtain lim,_,s (Ja,|> r_;1) = 0 and a € s?l/n)n21. So

we have shown the inclusion M (({oc) A ,¢) C 3?1/n) _,- Now, it can easily be

seen that D(l/n)HZIE € (loos loo) which implies (foo)p C S(n) ., and using

Lemma 5, we obtain 3(()1/n) =M (8(n)n>1760) C M ((¢oo) p sC0). So we have
shown the inclusions 3(()1/71);21 C M((loo)psc0) € M ((lo)p ) C s?
and we conclude M (({so) o sc0) = M ((lso) a5 €)

inclusion (oc)p C S(ny,., We obtain

1/")n21

= S((Jl/n)nzl' Using (ii) and the

S(1/n),s, =M (s(n)n21a£oo> C M ((loo)p s boc) © M (caloo) = 5(1/m), .,

and the identity M ((fsc)a slo0) = S(1/n),., holds. This completes the proof.
. >

5.2 General result on the solvability of the (SSIE) with
operator Fy C £+ F, with e € F.

In the following, we use the next result.

Theorem 13 Let F', F' and £ be linear spaces of sequences. Assume e € F,
EC s?n) _, and that F' satisfies the condition in (1). Then, the setZ (€, Fa, F")
n>1

of all the positive solutions r = (Tn),>1 of the (SSIE) Fa C €+ Fy, satisfies the

inclusion T (€, Fa,F') C F(Il/n)nzl' Moreover, if F(’l/n)nZl C M (Fa, F') then

N _
(&, FaF)=Fl . (3)
Proof. Let x € Z(E, Fa, F'). Then we have FA C £ + F, and since e € F we
have (n),~, € Fa and there are a € £ and ¢ € F' such that n = a,, + z,¢,, for
all n. Then we have n o

— (1 — —n> = @, for all n,

Tn n

and the condition £ C s(()n) N implies lim,,_, o ap/n = 0. Since F’ satisfies the
n>1

condition in (1) we obtain (n/x,),~, € F' and z € F] So we have

(1/n)pz
shown the inclusion Z (€, Fa, F') C F(’l/n) o Using Part (i) of Lemma 11,
where M (Fa,F') C Z(E,Fa,F'), we conclude Fli iy ., C Z(E,Fa,F’). This

completes the proof. m

5.3 Solvability of the (SSIE) cn C £ + F, where F' = ¢, ¢

or /.

As a direct consequence of Theorem 13 and Lemma 12, we obtain the following
result on the sets of all positive sequences x = (x,),,~, that satisfy each of the
(SSIE) with operator ca C € + F.. with F' = ¢g, ¢ or lw.
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Theorem 14 Let £ C s?n) . be a linear space of sequences. We have

s?l/")nzl fO’I‘ F= €0,
I(& caF') = SE?/n) . for F' =c,

s(l/n)n; for F' = L.

Proof. The result follows from Part (ii) of Lemma 12 and Theorem 13, where
F =c,and F' = ¢y, c and {, respectively. m
We may state some immediate applications of Theorem 14.

Example 15 Using Lemma 11 and Theorem 14, it can easily be seen that the
sets of the positive solutions © = (xy,),~, of each of the (SSIE) with operator,
ca C loo + sgf) and ca C ¢+ s;c) and ca C (co)p + sg;c) are determined by
(n/xy),>, € c. Then, the solutions of each of the (SSIE) ca C (co)p + 2,
ca Clo + 82 and ca C ¢+ sU are determined by n/z, — 0 (n — 00). In a
similar way, the solutions of each of the (SSIE) ca C (co)p + Sz, €A C loo + S
and ca C ¢+ s, are determined by (n/xy,), > € loo-

Example 16 It can easily be seen that wy C S?n) L This implies that the
n>1

set of all sequences x = (ry),>, € Ut that satisfy the (SSIE) with operator
ca C wo + 89 is determined by n/x, — 0 (n — o0).

Example 17 The set of all positive sequences that satisfy the (SSIE) ca C
cc, + 8% is determined by I (cc,,ca,co) = s(()l/n)n>1. Then, the set of all
positive sequences that satisfy the (SSIE) ca C co, + Si is determined by
Z(cey,cnlo) = S(1/n)as -

5.4 Solvability of the (SSIE) of the form (¢)), C £ + FJ.

In this part, Theorem 13 cannot be applied since e ¢ ¢y. So we need to use
some results stated in Section 4.

Theorem 18 Let £ C sy for some 6 € s?n) o be a linear space of sequences
n>1

and let F' = ¢, ¢ or ls, . Then, the set of all the solutions of the (SSIE)
(co)a C E+ Fy is determined by I (&, (co)a » F') = 5(1/m)

n>1"

Proof. Let z € Z (€, (¢co) A , F') where F' = ¢, ¢ or £o. Then we have (¢o), C
E+F) and since F' C s and s; satisfies the condition in (2), we obtain £+ F), C
59 + 8z = 5942 and (co)p C So4o- Then we have Dy /9402 € (co,51) and by
the characterization of (cg, $1) we have n/ (6, +z,) = O (1) (n — o). Using
the inclusion £ C sy with 6 € S?n)n>1 we have n/x, = O (1) (n = c0), that is,

T € 5(1/n),.,- We conclude 7 (€, (CB)A ,F') C S/ ot The converse follows

from Theorem 13 and Part (i) of Lemma 12, where M ((cp), ,51) = S(1/n). -,
. >
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Example 19 By Theorem 18 with 0 = e, we deduce that the set of all positive
sequences T = (xy),~, that satisfy the (SSIE) (co)p C loo + F,, is determined
by I (loos (co)p» F') = 5(1/m) -, Jor F' = co, ¢ or £

We consider another example, where bv, = ¢4 with p > 1 is the set of
p—bounded variations, (cf. [1]).

Example 20 Let p > 1. The set bv, = (X satisfies the inclusion bv, C sg
if and only if Dy,p% € (£P,s1). By the characterization of ((7,s1), (cf. [27,
Theorem 1.37, p. 161]) we obtain (n/0%),, € le. We may take 0, = n'/
with ¢ = p/ (p — 1), which implies 6 € 8?”)n>_1’ and by Theorem 18 we conclude
that the set of all positive sequences x = (x,,), -, that satisfy the (SSIE) (co) 5 C
bu, + F, is determined by Z (bup, (co)a ') = S(1/m), -, for F' = co, ¢ or le.

5.5 Solvability of the (SSIE) of the form bu,, C £ + F.. .

In this part, we use the notation bus, for the difference sequence space ({oo) A,
(cf. [1]) and we study each of the (SSIE) bvs, C € + F, where F’ € {cg, ¢, loo}.

Theorem 21 Let £ C s(()n) . be a linear space of sequences. Then, the sets of

all positive sequences x = (;z:;)nz1 that satisfy each of the (SSIE) buso C €+ s,
bue C E+ 82 and bus C E + sf(f) are determined by

I (&, bvoc, loc) = 5(17m),, and I (€, bvee, co) =L (€,bve, €) = m

Proof. First, we show the identities 7 (€, bvoo, £oo) = S(1/m) _, and Z (€, bveo, co) =

50 . From Theorem 13, where £ = s , F = Ly and F' = lo,
(1/n), 51 (n)y>1

and co respectively, we obtain Z (£, bve, loo) C 5(1/m), -, and I (€, bvs,co) C

3(()1/n)n21' Then, by Part (iii) of Lemma 12, we have M (bveo, loc) = S(1/m), .,

and M (bvso, c) = 3?1/n) . and we conclude by Part (iii) of Lemma 11. Now we

show the identity Z (&, b, ¢) = 3((J1/n) o For this, we let € Z (€, (loo) A »C)-

Then we have ({sc)r C s?n) Tt sgf), and by Theorem 13, where £ = s?n) ,

n> n>1

F =/l and F' = ¢, we have T (&, (lxs)p ,C) C SE?/n) _and (n/an),5, € c.
(c) o c)

0 (
C S("Hﬂn)ngl' We have s(n)nZl C s(n+$n)n21

since n/ (n + x,) = O (1) (n — o0). Then we have

Now, we show the inclusion (£o) 5

Tn,
= for all
PRI R or all n,

Tn
and as we have just seen, we have lim,,_,, n/x, =l for some scalar | and

1 1
lim ——— = —— > 0.
Tp

10
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(e)

Thus, we have shown the inclusion sz’ C s(c)

(n+on),>1

s and since M (({og) A ,€) =

(”+In)n21
S(()l/n)n21 we obtain (1/ (n + 25)),,>, € S((Jl/")nm' Then we have n/ (n + x,,) — 0

. These statements imply

the inclusions ({o) A C S(()n)nZI + 59 ¢

(n — oo) and (n/xn),>, € co, and we have shown the inclusion Z (€, (€so) 5 , €) C

8(()1/")n21' Finally, since M ((fx) A 5 ) = 8?1/")n21’ by Part (i) of Lemma 11, we
conclude Z (£, (boo)p s C) = S(()l/n) - This completes the proof. m

We obtain the following result, where bs = (£)y; is the set of all bounded
series.

Example 22 The solutions of each of the (SSIE) bus C oo + 589 and bus C
bs + s\ are determined by T (booy bUoo, €) = I (b8, bvso, ) = S?I/n)

n>1

Using similar arguments as in Example 20, we obtain the following result.

Corollary 23 Let p > 1. The solutions of the (SSIE) bus, C bu, + sfcc) are
determined by I (bvy, buss, ) = S?I/n) N

6 Solvability of the (SSIE) of the form (w.), C
E+F,

In this part, we deal with each of the (SSIE) with operator of the form (we), C

E4 52, (Weo)p CE+ 5, and (woo)p CE+ s{?. For instance, the solvability of
the (SSIE) (weo)a C s(()n) _, 82 consists in determining the set of all positive
n=>1

sequences & = (Zp),>; that satisfy the next statement. For every y such that
n~t > Yk — yk—1] = O (1) there are two sequences u and v with y = v+ v
where lim,,— o0 4, /n = 0 and v, /x,, = O (1) (n — 00).

6.1 Determination of the sets M ((we),,Y) withY € {co, ¢, (s}

We state the next Lemma.

Lemma 24 We have (i) M ((Woo)a »51) = S(1/n), ., and (ii) M ((woo)p o) =
M ((wso) 5 €) = 3?1/71)”21-

Proof. (i) We have A € (wso, Woo) Which implies woo C (Woo) o and M ((weo) o ,51) C
M (W, 81) = 8(1/n),~,- Then we have ws C (EOO)C1 and (Woo) o C [(ZOO)CI]A
and since C1A = D(l/n)n>12A = D(l/”)n>1I = D(l/")n>1 we obtain (woo)A -
= S(n),.,- Then, by Part (ii) of Lemma 5, we obtain s(1/n) _ =

(bec) Dy,

M (s(n)n>l,sl) C M ((woo) p »51). So we have shown the identity M ((woo) 5 ,51) =

S(1/n) sy (ii) First, we show the inclusion 5?1/")@1 C M ((woo) A o). As we

11
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have just seen, we have (woo), C 5(n)pss and s?l/n)nZI =M (s(n)@l,co) C
M ((woo) o s o). Then, by the inclusion wee C (Woo) o We deduce M ((woo) 5 » €0) C

M (oo, co) = S?l/n)n>1 and we conclude M ((weo) 5 ,c0) = 8(()1/")"21' Now, we

show the identity M ((ws)a ,€) = 8(()1/n) _,- As above, the inclusion we, C

(Woo) o implies M ((woo) 5 s €) € M (weao,¢). Then, by Part (ii) (b) of Lemma 6,
we have M (weo,c) = s? and we obtain M ((Weo)a ,€) C 5(()1/n) - Us-

1/n)n21
ing the identity M ((we)A »C0) = S(()l/n) _, and the inclusion M ((Woo) A »€0) C
M ((woo) p > €), we obtain M ((weo)p »¢0) = M (W) p ,€) = 8?1/")n>1' This

completes the proof. m

6.2 Application to the solvability of the (SSIE) of the form
(Weo)p C €+ FL.

In the following theorem, we solve each of the (SSIE) (ws ), C € + F,, where
F' e {co,c, b}

Theorem 25 Let £ C s(()n)n>1 be a linear space of sequences. Then,

(i) The set of all positive sequences v = (x,),>, that satisfy the (SSIE)
(Woo) A C &+ sz 1s determined by L (€, (Woo) A ,51) = S(1/n)pas -

(ii) The sets of all positive sequences © = (), that satisfy each of the
(SSIE) (woo) A C € 4 8% and (woo) A C € + 589 are determined by

T(E, (W) €0) = T (€: (o) ) = Ty )

Proof. (i) By Part (i) of Theorem 21 and since (€o)y C (Woo)a We have
T(E,(woo)p»81) C T(E,(bsc)ps81) = 3(1jm),-,- Then, by Lemma 12 and
Lemma 24, we have M ((woo)x ,51) = M ((boo) o ,51) = S(1/m),~,- We conclude

by Part (i) of Lemma 11, that 7 (€, (weo) a ,81) = S(1/m) -, - (il) From Part (ii)

of Theorem 21 and Lemma 24, we obtain the next two statements, s‘()1 ), =
n>1

M (Woo)psc0) C (€, (Woo)a »c0) and Z (&, (Woo)p > c0) C Z (€, (Woo)p ,¢) C
Z(&(bo)n ,c) = 3(()1/n)
proof. m

. This implies the identities in (4) and completes the
1

n>

Example 26 Since wg C S?n) L the set of all positive sequences © = (Tp),,>;
n>1 =

that satisfy the (SSIE) (woo)n C wo + 8y 4s determined by x,, > Kn for all n
and for some K > 0. Similarly, the sets of all positive sequences x = (Jcn)n21
that satisfy the (SSIE) (weo) o C wo + 82 is determined by lim, o0 T, /n = 0.

Example 27 By the characterization of (¢, cp), we can see that D(l/n)wlel S
(¢, co) which implies the inclusion cc, C s(()n) L This implies that the solutions
n>1

of the (SSIE) (weo) A C coy + 82 are determined by lim,, o0 2, /1 = 00.

12
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In the following, we solve the (SSIE) (wao), C W) +5 where W0 = D,w
for r > 0. This solvability consists in determining the set of all sequences
z = (x,),>; € UT that satisfy the following statement. For every sequence
Y = (Yn), >, for which n™ ' >0 |yr, — yx—1| < K for some K > 0 and for all n,

there are two sequences u and v, with y = u+wv such that n™* >}, Jug| /r¥ — 0
(n — o0) and lim,, o (v, /xy,) = L for some scalar L.

Corollary 28 Letr > 0. The set ;" of all the positive sequences x = (a:n)nZl

0 ifr<1
that satisfy the (SSIE) (weo) o C W79+S§CC) is determined by T = (/) ifr<l,
U+ ifr>1.

Proof. The inclusion W C s, _ holds if and only if (" /n),,~.; € M (wo, co),

n

and from the identity M (wo,co) = S(1/n), ., this inclusion holds for all r <

1. Thus, by Theorem 25 we have I = s?l/n) . for all » < 1. Let r >

1. Then we have r™" 3% |k = o(1) (n—o0) and Dy, € (s(n)wl,co).

Since (8(”)@1 ,

(woo) o € W) holds for all r > 1. This completes the proof. m

co) C (oo, wp) this implies Dy /.3 € (weo, wo) and the inclusion

7 On the solvability of the (SSIE) of the form

FA C €+ F) involving the sets wy, or w.

In this section, we determine the multipliers M (wa,Y) and M ((wo),,Y)
where Y = ¢g, ¢, or £o. Then we apply these results to the solvability of
the (SSIE) with operator Fa C £ + F. where F = wyg, or w and F’ = ¢, ¢, or
loo.

7.1 On the multipliers of the form M (wa,Y) and M ((wy),,Y)

In this part, we determine the multipliers M (wa,Y) and M ((wg), ,Y) where
Y = ¢y, ¢, or ls.

Lemma 29 (i) M ((wo)p,Y) = Sy, ., for Y = co, ¢, or b (i) (a)

M (wa,co) = 8?1/”)n>1’ (b) M (wa,c) = SE?/”)"N and (¢) M (wa,lo) =
S(1/n)psy - B B

Proof. (i) follows from the proof of [9, Proposition 7.3, p. 98]. (ii) (a) We
show M (wa,co) = S?l/n) o Since ¢ C w, then ca C wa and by Part (i) we
obtain M (wa,co) C M (ca,co) = 3(()1/7;) _,- Then, by Part (ii) of Lemma 24,
we have M ((Woo) o 5 C0) = 5?1/11) _, and by Part (iii) of Lemma 5, the inclusion

n

wa C (Woo), implies s?l/n)nZI = M ((0oo) A c0) C M (wa,co). So we have

13
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shown M (wa,co) = S?l/n) . (ii) (b) We show M (wa,c) = SEI)/n) . We have

ca C wa and by Part (ii) of Lemma 12, we obtain M (wa,c) C M(CA,C) =

Ei)/n) . Then we show the inclusion sEl)/n)n21 C M (wa,c). We have w C cc,

59
(")n>1

_ 4
we conclude wa C D1 /mrpsy = S(n)ay” Then, by Part (iii) of Lemma 5, we

have s'¢) =M (S(C) ,c) C M (wa,c) and we have shown the identity

(1/”)n21 (”)n21

M (wa,c) = SE?/n) o (ii) (c) From Part (i) and Remark 6.1, we obtain

and wa C (ccy)a, and since C1A = D(y/,,) . we obtain (cc,)p = and

$(1/m)nsy =M (Woo)p s loo) © M (wa,los) C M ((wo) 55 loc) = S(1/n), ., -

This shows the identity M (wa,fx) = S(1/n) .- This completes the proof. m

7.2 Application to the solvability of the (SSIE) FA C £+ F]
where ' = wy, or w and F’' = ¢y, ¢, or {4

In this part, under some conditions on £ we solve each of the (SSIE) with
operator (1) (wo), C E+52, (2) (wo), CE+ &9, (3) (wo)p C €+ s, and (17)

wa CE+38Y, (2) wa C E+ 355)7 (3) wa C &€+ s,.
We can state the following theorem.

Theorem 30 Let £ be a linear space of sequences. Then we have:
(i) Assume E C sy for some 0 € S?”)n21' Then I (€, (wo)A ,F") = S(1/n) 31

for F' = cg, ¢, or L.
(i) Assume & C s(()n) _,+ Then (a) T (E,wa,co) = 5?1/n) " (b) T (E,wa,c) =

Ei)/n) and (¢) T (E,wa,leo) = S(1/n)por
Proof. (i) By Part (i) of Lemma 29 we have s /n) = M ((wo) 5 s c0), and

by Part (i) of Lemma 11 we have (1) e Z(&,(wo)u ,c0). Then, by the
inclusion (cp)n C (wo), and using Theorem 18, we have Z (£, (wo) A s ¥oc) C

Z(&,(co)plc) =3(1/n), -, We conclude
S/m,z; C (€ (wo)asc0) CI(E, (wo)sse) CI(E:(wo)asloe) C S(i/m), 2,

and we have shown (i). (ii) follows from the inclusions M (wa, F') C Z (€, wa, F') C
Z(E,en,F') = M (ca, F’), and from Part (ii) of Lemma 29 and Part (ii) of
Lemma 12, where we have M (wa, F') = M (ca, F') for F' = cp, ¢, or lo. W

Example 31 By Part (ii) of Theorem 30, the solutions of the (SSIE) wa C

wo + sgf) are determined by (n/acn)n>1 € c. As we have seen in Example 27,

we have the inclusion cc, C s( _» and by Part (i) (b) of Theorem 30, the

Nn>

solutions of the (SSIE) wa C cc, + sf(c) are determined by (n/xy),, € c.

14
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