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Abstract

Given any sequence a = (an)n≥1 of positive real numbers and any set E
of complex sequences, we write Ea for the set of all sequences y = (yn)n≥1

such that y/a = (yn/an)n≥1 ∈ E. In this paper, we use the spaces w∞, w0

and w of strongly bounded, summable to zero and summable sequences,
that are the sets of all sequences y such that

(
n−1∑n

k=1 |yk|
)
n
is bounded,

tends to zero and such that y − le ∈ w0, for some scalar l, respectively,
(cf. [24, 22]). These sets where used in the statistical convergence, (cf.
[17, Chapter 4]). Then we deal with the solvability of each of the (SSIE)
F∆ ⊂ E + F ′x where E is a linear space of sequences, F = c0, c, `∞, w0,
w, or w∞ and F ′ = c0, c, or `∞. For instance, the solvability of the
(SSIE) w∆ ⊂ w0+s

(c)
x consists in determining the set of all sequences x =

(xn)n≥1 ∈ U+ that satisfy the following statement. For every sequence y

that satisfy the condition limn→∞ n−1∑n
k=1 |yk − yk−1 − l| = 0, there are

two sequences u and v, with y = u+v such that limn→∞ n−1∑n
k=1 |uk| =

0 and limn→∞ (vn/xn) = L for some scalars l and L. These results extend
those stated in [11, 12, 10].

Key words: BK space, matrix transformations, multiplier of sequence
spaces, sequence spaces inclusion equations.

Mathematics Subject Classification: 40C05 and 46A45.

1 Introduction

We write ω for the set of all complex sequences y = (yk)k≥1, `∞, c and c0
for the sets of all bounded, convergent and null sequences, respectively, also
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`p = {y ∈ ω :
∑∞
k=1 |yk|

p
<∞} for 1 ≤ p < ∞. If y, z ∈ ω, then we write

yz = (ynzn)n≥1. Let U = {y ∈ ω : yn 6= 0}, U+ = {y ∈ ω : yn > 0}. We write
z/u = (zn/un)n≥1 for all z ∈ ω and all u ∈ U , in particular 1/u = e/u, where

e is the sequence with en = 1 for all n. Finally, if a ∈ U+ and E is any subset
of ω, then we put Ea = (1/a)

−1 ∗ E = {y ∈ ω : y/a ∈ E}. Let E and F be

subsets of ω. In [4], the sets sa, s0
a and s

(c)
a were defined for positive sequences

a by (1/a)
−1 ∗ E and E = `∞, c0 and c, respectively. In [6] we defined the

sum Ea + Fb and the product Ea ∗ Fb were defined where E, F are any of the
symbols s, s0, or s(c). Recall that the spaces w∞ and w0 of strongly bounded
and summable to zero sequences by the Cesàro method, are the sets of all y such
that

(
n−1

∑n
k=1 |yk|

)
n

is bounded and tend to zero respectively. In this way,
Hardy and Littlewood [22], defined the set w of strongly convergent sequences
by the Cesàro method, for real numbers as follows. A sequence y is said to be
strongly Cesàro convergent to L, if y − Le ∈ w0. These spaces were studied
by Maddox [24], Malkowsky, Rakočević [27] and Malkowsky, Başar in [2]. In
[13, 8, 21, 15] we gave some properties of well known operators defined by the

sets Wa = (1/a)
−1 ∗ w∞ and W 0

a = (1/a)
−1 ∗ w0. In this paper, we deal with

special sequence spaces inclusion equations (SSIE), which are determined by
an inclusion, for which each term is a sum or a sum of products of sets of the
form (Ea)T and

(
Ef(x)

)
T

where f maps U+ to itself, E is any linear space of
sequences and T is a triangle, (cf. [12, 11, 10, 17]). Some results on the (SSIE)
were stated in [16, 11, 12, 10], the results stated in [11], [12] and [10], were put
together in [17]. In [11] we dealt with the class of (SSIE) of the form F ⊂ Ea+F ′x
where F ∈ {c0, `p, w0, w∞} and E, F ′ are any of the sets c0, c, s1, `p, w0, or w∞
with p ≥ 1. Then we stated some results on the solvability of the corresponding
(SSIE) in the particular case when a = (rn)n and we dealt with the case when
F = F ′. In [12] we dealt with the (SSIE) of the form F ⊂ Ea + F ′x with e ∈ F
and we determined the solutions of these (SSIE) when a = (rn)n≥1, F is either
c, or s1 and E, F ′ are any of the sets c0, c, s1, `p, w0, or w∞ with p ≥ 1. Then
we solved each of the (SSIE) c ⊂ Dr ∗ E∆ + cx, with E ∈ {c0, c, s1}, and the

(SSIE) s1 ⊂ Dr ∗(s1)∆ +sx. We also studied the (SSIE) c ⊂ Dr ∗EC1
+s

(c)
x with

E ∈ {c, s1} and s1 ⊂ Dr ∗ (s1)C1
+ sx where C1 is the Cesàro operator defined

by (C1)n y = n−1
∑n
k=1 yk for all y, and we dealt with the solvability of the

(SSE) associated with the previous (SSIE) and defined by Dr ∗ EC1 + s
(c)
x = c

with E ∈ {c0, c, s1} and Dr ∗ EC1
+ sx = s1 with E ∈ {c, s1}. In [10] we dealt

with the solvability of the (SSIE) of the form `∞ ⊂ E + F ′x where E is a given
linear space of sequences and F ′ is either c0, or `∞. Then, for given linear space

E of sequences, we solved each of the (SSIE) c0 ⊂ E + sx and c ⊂ E + s
(c)
x and

the (SSE) E + s
(c)
x = c.

In this paper, we use the difference sequence spaces (c0)∆, c∆ and (`∞)∆

introduced by Kizmaz, (cf. [23]) and we deal with the solvability of each of the
(SSIE)

F∆ ⊂ E + F ′x,

where F = c0, c, `∞, w0, w∞, or w, and F ′ = c0, c, or `∞ and E is a linear
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space of sequences.
This paper is organized as follows. In Section 2, we recall some well known

results on sequence spaces and matrix transformations. In Section 3, we recall
some results on the multipliers of some sets. In Section 4, we recall some results
used for the solvability of the (SSIE). In Section 5, we deal with the solvability
of the (SSIE) with operator to solve each of the (SSIE) of the form c∆ ⊂ E+F ′x,
(c0)∆ ⊂ E + F ′x and (`∞)∆ ⊂ E + F ′x with F ′ = c0, c, or `∞. In Section 6, we
study each of the (SSIE) (w∞)∆ ⊂ E + F ′x where F ′ = c0, c, or `∞. Finally, in
Section 7, we study the solvability of the (SSIE) F∆ ⊂ E + F ′x where F = w0,
or w and F ′ = c0, c, or `∞.

2 Preliminaries and notations

An FK space is a complete metric space, for which convergence implies coordi-
natewise convergence. A BK space is a Banach space of sequences that is, an FK
space. A BK space E is said to have AK if for every sequence y = (yk)k≥1 ∈ E,
then y = limp→∞

∑p
k=1 yke

(k), where e(k) = (0, ..., 1, ...), 1 being in the k − th
position.

For a given infinite matrix A = (ank)n,k≥1 we define the operators An =
(ank)k≥1 for any integer n ≥ 1, by Any =

∑∞
k=1 ankyk, where y = (yk)k≥1,

and the series are assumed convergent for all n. So we are led to the study of
the operator A defined by Ay = (Any)n≥1 mapping between sequence spaces.
When A maps E into F , where E and F are subsets of ω, we write A ∈
(E,F ), (cf. [24, 3, 30, 26]). It is well known that if E has AK then, the
set B (E) of all bounded linear operators L mapping in E, with norm ‖L‖ =
supy 6=0 (‖L (y)‖E / ‖y‖E) satisfies the identity B (E) = (E,E). We denote by
ω, c0, c, `∞ the sets of all sequences, the sets of null, convergent and bounded
sequences. For any subset F of ω, we write FA = {y ∈ ω : Ay ∈ F} and for any
subset E of ω we write AE = {y ∈ ω : there is x ∈ E such that y = Ax}. Then,
for given sequence u ∈ ω we define the diagonal matrix Du by [Du]nn = un for all
n. It is interesting to rewrite the set Eu using a diagonal matrix. Let E be any
subset of ω and u ∈ U+ we have Eu = Du ∗E = {y = (yn)n≥1 ∈ ω : y/u ∈ E}.
We use the sets s0

a, s
(c)
a and sa defined as follows (cf. [4, 5]). For given a ∈ U+ we

put Da ∗c0 = s0
a, Da ∗c = s

(c)
a and Da ∗`∞ = sa. We frequently write ca instead

of s
(c)
a to simplify. Each of the spaces Da ∗ E, where E ∈ {c0, c, `∞} is a BK

space normed by ‖y‖sa = supn≥1 (|yn| /an) and s0
a has AK. If a = (Rn)n≥1 with

R > 0, then we write sR, s0
R and s

(c)
R , for the sets sa, s0

a and s
(c)
a , respectively.

We also write DR for D(Rn)n≥1
. When R = 1, we obtain s1 = `∞, s0

1 = c0 and

s
(c)
1 = c. Recall that S1 = (s1, s1) is a Banach algebra and (c0, s1) = (c, `∞) =

(s1, s1) = S1. We have A ∈ S1 if and only if supn (
∑∞
k=1 |ank|) < ∞. Recall

the Schur’s result (cf. [30, Theorem 1.17.8, p. 15]) on the class (s1, c). We have
A ∈ (s1, c) if and only if limn→∞ ank = lk for some scalar lk, k = 1, 2,..., and
limn→∞

∑∞
k=1 |ank| =

∑∞
k=1 |lk|, where the series

∑∞
k=1 |lk| is convergent.

We also use the following two lemmas, where the infinite matrix T is said
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to be a triangle if Tnk = 0 for k > n and Tnn 6= 0 for all n.

Lemma 1 [7, Lemma 9, p. 45] Let T ′ and T ′′ be any given triangles and let
E, F ⊂ ω. Then, for any given operator T represented by a triangle we have
T ∈ (ET ′ , FT ′′) if and only if T ′′T T ′−1 ∈ (E,F ).

Taking T ′ = D1/a and T ′′ = Db for a, b ∈ U+ we obtain the next well-known
result.

Lemma 2 Let a, b ∈ U+ and let E, F ⊂ ω be any linear spaces. We have
A ∈ (Ea, Fb) if and only if D1/bADa ∈ (E,F ).

3 On the triangle C (λ) and on the multipliers of
special sets

In this section, we define the spaces of strongly bounded and summable sequences
by the Cesàro method. Then we recall some results on the multipliers of sequence
spaces involving the previous spaces.

3.1 On the triangles C (λ) and ∆ (λ) and the sets w0, w and
w∞.

For λ ∈ U the infinite matrices C (λ) and ∆ (λ) are triangles defined as follows.
We have [C (λ)]nk = 1/λn for k ≤ n, this triangle was used, for instance in [20,
18], see also the Rhaly matrix studied by [28, 29]). Then, the nonzero entries
of ∆ (λ) are determined by [∆ (λ)]nn = λn for all n, and [∆ (λ)]n,n−1 = −λn−1

for all n ≥ 2. It can be shown that the matrix ∆ (λ) is the inverse of C (λ),
that is, C (λ) (∆ (λ) y) = ∆ (λ) (C (λ) y) = y for all y ∈ ω. If λ = e we obtain
the well known operator of the first difference represented by ∆ (e) = ∆. We
then have ∆ny = yn − yn−1 for all n ≥ 1, with the convention y0 = 0. We
have Σ = C (e) and then, we may write C (λ) = D1/λΣ. Note that ∆ = Σ−1.

The Cesàro operator is defined by C1 = C
(

(n)n≥1

)
. In the following, we

use the inverse of C1 defined by C−1
1 = ∆ (λ) where λ = (n)n≥1. We use

the set of sequences that are a−strongly bounded and a−strongly convergent
to zero, defined for a ∈ U+ by Wa =

{
y ∈ ω : supn

(
n−1

∑n
k=1 |yk| /ak

)
<∞

}
,

and W 0
a =

{
y ∈ ω : limn→∞

(
n−1

∑n
k=1 |yk| /ak

)
= 0
}

, (cf. [21, 15]). For a =
(rn)n≥1 the set Wa and W 0

a are denoted by Wr and W 0
r . For r = 1 we obtain the

well-known spaces w∞ and w0 of strongly bounded and strongly null sequences
by the Cesàro method (cf. [25]).

3.2 On the multipliers of some sets.

First, we need to recall some well known results. Let y and z be sequences and let
E and F be two subsets of ω, we then writeM (E,F ) = {y ∈ ω : yz ∈ F for all z ∈ E},
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the set M (E,F ) is called the multiplier space of E and F . We will use the
next lemmas.

Lemma 3 Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then (i) M (E,F ) ⊂
M
(
Ẽ, F

)
for all Ẽ ⊂ E. (ii) M (E,F ) ⊂M

(
E, F̃

)
for all F ⊂ F̃ .

Lemma 4 Let a, b ∈ U+ and let E and F be two subsets of ω. Then we have
Da ∗ E ⊂ Db ∗ F if and only if a/b ∈M (E,F ).

From Lemma 2 we obtain the next result.

Lemma 5 [??, Corollary 3.2, p. 4] Let a, b ∈ U+. Then we have: (i)
M
(
s0
a, χ
′
b

)
= sb/a where χ′ is any of the symbols s0, s(c), or s. (ii) M (χa, sb) =

sb/a where χ is any of the symbols s(c), or s. (iii) M
(
sa, s

(c)
b

)
= M

(
sa, s

0
b

)
=

s0
b/a and M

(
s

(c)
a , s

(c)
b

)
= s

(c)
b/a.

In the following, we use the results stated below, (cf. [11, Lemma 6, pp.
214-215]).

Lemma 6 We have: (i) (a) M (c, c0) = M (`∞, c) = M (`∞, c0) = c0 and
M (c, c) = c. (b) M (E, `∞) = M (c0, F ) = `∞ for E, F = c0, c, or `∞. (ii) (a)
M (w∞, `∞) = M (w0, F ) = s(1/n)n≥1

for F = c0, c, or `∞. (b) M (w∞, c0) =

M (w∞, c) = s0
(1/n)n≥1

. (c) M (E,w0) = w0 for E = s1, or c. (d) M (E,w∞) =

w∞ for E = c0, s1, or c.

To state results on the multipliers involving the set w, we need the next
elementary lemmas.

Lemma 7 We have w ⊂ s0
(n)n≥1

.

Proof. Let y ∈ w. Then, by the inequality n−1 |yn − l| ≤ n−1
∑n
k=1 |yk − l|

for some scalar l and for all n, we deduce n−1 |yn − l| → 0 (n→∞), and since
n−1 |yn| ≤ n−1 |yn − l|+ n−1 |l| we conclude y ∈ s0

(n)n≥1
and w ⊂ s0

(n)n≥1
.

Lemma 8 We have M (w, `∞) = M (w, c) = M (w, c0) = s(1/n)n≥1
.

Proof. By Lemma 7, we have M
(
s0

(n)n≥1
, c0

)
⊂ M (w, c0) and by Part (i) of

Lemma 5 we have s(1/n)n≥1
= M

(
s0

(n)n≥1
, c0

)
⊂ M (w, c0). Then, using Part

(ii) (a) of Lemma 6, we conclude

s(1/n)n≥1
⊂M (w, c0) ⊂M (w, c) ⊂M (w, `∞) ⊂M (w0, `∞) = s(1/n)n≥1

,

This completes the proof.

Remark 9 By [14, Remark 3.4] we have M (w0, w∞) = M (w∞, w∞) = `∞.
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4 On the sequence spaces inclusions.

In this section, we are interested in the study of the set of all positive sequences
x that satisfy the inclusion F ⊂ E + F ′x where E , F and F ′ are linear spaces of
sequences. We may consider this problem as a perturbation problem. If we know
the set M (F, F ′), then the solutions of the elementary inclusion F ′x ⊃ F are
determined by 1/x ∈ M (F, F ′). Now, the question is: let E be a linear space
of sequences. What are the solutions of the perturbed inclusion F ′x + E ⊃ F ?
An additionnal question may be the following one: what are the conditions on
E under which the solutions of the elementary and the perturbed inclusions are
the same ?

4.1 Some definitions and results used for the solvability
of some (SSIE).

In the following, we use the notation I (E , F, F ′) = {x ∈ U+ : F ⊂ E + F ′x},
where E , F and F ′ are linear spaces of sequences and a ∈ U+. We can state the
next elementary results.

Lemma 10 Let E, E1, F , F ′, F and F ′′ be linear spaces of sequences. Then
we have: (i) If E1 ⊂ E, then I (E1, F, F ′) ⊂ I (E , F, F ′). (ii) If F ⊂ F , then
I (E , F, F ′) ⊂ I (E ,F , F ′). (iii) If F ′ ⊂ F ′′, then I (E , F, F ′) ⊂ I (E , F, F ′′).

For any set χ of sequences we let χ = {x ∈ U+ : 1/x ∈ χ}. Then we write
Φ = {c0, c, `∞, w0, w, w∞}. By c (1) we define the set of all sequences α ∈ U+

that satisfy the condition limn→∞ αn = 1. Then we consider the condition

G ⊂ G1/α for all α ∈ c (1) , (1)

for any given linear space G of sequences. Notice that condition (1) is satisfied
for all G ∈ Φ. Then we denote by U+

1 the set of all sequences α with 0 < αn ≤ 1
for all n. We consider the condition

G ⊂ G1/α for all α ∈ U+
1 . (2)

for any given linear space G of sequences. To show some results on the (SSIE),
we introduce a linear space of sequences H which contains the spaces E and F ′

and we will use the fact that if H satisfies the condition in (2) then we have
Ha + Hb = Ha+b for all a, b ∈ U+ (cf. [14, Proposition 5.1, pp. 599-600]).
Notice that c does not satisfy this condition, but each of the sets c0, `∞, `p, w0

and w∞ satisfies the condition in (2). So we have for instance s0
a + s0

b = s0
a+b

and Wa +Wb = Wa+b.

4.2 Some properties of the set I (E , F, F ′).

We need the next lemma involving the multiplier of F and F ′, which is an
extension of Lemma 10.
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Lemma 11 Let E, E0, F , F and F ′ be linear spaces of sequences. Then
we have: (i) M (F, F ′) ⊂ I (E , F, F ′). (ii) If I (E0, F, F ′) ⊂ M (F, F ′), for
any linear space of sequences E ⊂ E0, then I (E , F, F ′) = M (F, F ′). (iii)
If I (E ,F , F ′) ⊂ M (F, F ′), for some linear space of sequences F ⊂ F , then
I (E , F, F ′) = M (F, F ′).

Proof. (i) Let x ∈ M (F, F ′). Then, we successively obtain 1/x ∈ M (F, F ′),
F ⊂ F ′x, F ⊂ E + F ′x and x ∈ I (E , F, F ′). This implies M (F, F ′) ⊂ I (E , F, F ′)
and (i) holds. (ii) We have I (E , F, F ′) ⊂ I (E0, F, F ′) ⊂ M (F, F ′) and we
conclude by (i) that I (E , F, F ′) = M (F, F ′). (iii) follows from the inclusions
M (F, F ′) ⊂ I (E , F, F ′) ⊂ I (E ,F , F ′) ⊂M (F, F ′).

5 On the solvability of the (SSIE) with operator
of the form F∆ ⊂ E+F ′x, where F , F ′ ∈ {c0, c, `∞}

In this section, we determine multipliers involving some difference sequence
spaces. Then we state a general result on the solvability of the (SSIE) with
operator F∆ ⊂ E +F ′x with e ∈ F . Then we apply these results to solve each of
the (SSIE) c∆ ⊂ E +F ′x and (c0)∆ ⊂ E +F ′x and (`∞)∆ ⊂ E +F ′x with F ′ = c0,
c, or `∞.

5.1 On the multipliers of the form M (X∆, Y ) where X,
Y ∈ {c0, c, `∞}.

In all that follows, for a ∈ U+, we use the triangle DaΣ, whose the nonzero
entries are defined by (DaΣ)nk = an for k ≤ n. We have (DaΣ)n y = an

∑n
k=1 yk

for all y ∈ ω and for all n. This triangle is also called the Rhally matrix, (cf.
[28, 29]). We obtain some results on the multipliers involving the sets of the
difference sequence spaces (c0)∆, c∆ and (`∞)∆ introduced by Kizmaz, (cf. [23],
see also [1]), and stated in the next lemma.

Lemma 12 (i) M ((c0)∆ , Y ) = s(1/n)n≥1
where Y = c0, c or `∞. (ii) M (c∆, c0) =

s0
(1/n)n≥1

, M (c∆, c) = s
(c)
(1/n)n≥1

and M (c∆, `∞) = s(1/n)n≥1
. (iii) M ((`∞)∆ , c0) =

M ((`∞)∆ , c) = s0
(1/n)n≥1

and M ((`∞)∆ , `∞) = s(1/n)n≥1
.

Proof. (i) follows from the proof of [9, Proposition 7.1 p. 95]. (ii) We have
a ∈ M (c∆, c0) if and only if DaΣ ∈ (c, c0) and by the characterization of
(c, c0) we have nan → 0 (n→∞) and a ∈ s0

(1/n)n≥1
. In the same way, we

have a ∈ M (c∆, c) if and only if DaΣ ∈ (c, c) and by the characterization

of (c, c) we obtain a ∈ s
(c)
(1/n)n≥1

. The identity M (c∆, `∞) = s(1/n)n≥1
can

be obtain using similar arguments. (iii) We show M ((`∞)∆ , c) ⊂ s0
(1/n)n≥1

.

For this, let a ∈ M ((`∞)∆ , c). Then we have DaΣ ∈ (`∞, c) which implies
DaΣ ∈ (c, c) and (nan)n≥1 ∈ c. This implies limn→∞ an = 0 and by the
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Schur theorem we obtain limn→∞ (|an|
∑n
k=1 1) = 0 and a ∈ s0

(1/n)n≥1
. So

we have shown the inclusion M ((`∞)∆ , c) ⊂ s0
(1/n)n≥1

. Now, it can easily be

seen that D(1/n)n≥1
Σ ∈ (`∞, `∞) which implies (`∞)∆ ⊂ s(n)n≥1

and using

Lemma 5, we obtain s0
(1/n)n≥1

= M
(
s(n)n≥1

, c0

)
⊂ M ((`∞)∆ , c0). So we have

shown the inclusions s0
(1/n)n≥1

⊂ M ((`∞)∆ , c0) ⊂ M ((`∞)∆ , c) ⊂ s0
(1/n)n≥1

and we conclude M ((`∞)∆ , c0) = M ((`∞)∆ , c) = s0
(1/n)n≥1

. Using (ii) and the

inclusion (`∞)∆ ⊂ s(n)n≥1
we obtain

s(1/n)n≥1
= M

(
s(n)n≥1

, `∞

)
⊂M ((`∞)∆ , `∞) ⊂M (c∆, `∞) = s(1/n)n≥1

and the identity M ((`∞)∆ , `∞) = s(1/n)n≥1
holds. This completes the proof.

5.2 General result on the solvability of the (SSIE) with
operator F∆ ⊂ E + F ′

x with e ∈ F .

In the following, we use the next result.

Theorem 13 Let F , F ′ and E be linear spaces of sequences. Assume e ∈ F ,
E ⊂ s0

(n)n≥1
and that F ′ satisfies the condition in (1). Then, the set I (E , F∆, F

′)

of all the positive solutions x = (xn)n≥1 of the (SSIE) F∆ ⊂ E+F ′x satisfies the

inclusion I (E , F∆, F
′) ⊂ F ′(1/n)n≥1

. Moreover, if F ′(1/n)n≥1
⊂M (F∆, F

′) then

I (E , F∆, F
′) = F ′(1/n)n≥1

. (3)

Proof. Let x ∈ I (E , F∆, F
′). Then we have F∆ ⊂ E + F ′x and since e ∈ F we

have (n)n≥1 ∈ F∆ and there are α ∈ E and ϕ ∈ F ′ such that n = αn +xnϕn for
all n. Then we have

n

xn

(
1− αn

n

)
= ϕn for all n,

and the condition E ⊂ s0
(n)n≥1

implies limn→∞ αn/n = 0. Since F ′ satisfies the

condition in (1) we obtain (n/xn)n≥1 ∈ F ′ and x ∈ F ′(1/n)n≥1
. So we have

shown the inclusion I (E , F∆, F
′) ⊂ F ′(1/n)n≥1

. Using Part (i) of Lemma 11,

where M (F∆, F ′) ⊂ I (E , F∆, F
′), we conclude F ′(1/n)n≥1

⊂ I (E , F∆, F
′). This

completes the proof.

5.3 Solvability of the (SSIE) c∆ ⊂ E + F ′
x where F ′ = c0, c

or `∞.

As a direct consequence of Theorem 13 and Lemma 12, we obtain the following
result on the sets of all positive sequences x = (xn)n≥1 that satisfy each of the
(SSIE) with operator c∆ ⊂ E + F ′x with F ′ = c0, c or `∞.
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Theorem 14 Let E ⊂ s0
(n)n≥1

be a linear space of sequences. We have

I (E , c∆, F ′) =


s0

(1/n)n≥1
for F ′ = c0,

s
(c)
(1/n)n≥1

for F ′ = c,

s(1/n)n≥1
for F ′ = `∞.

Proof. The result follows from Part (ii) of Lemma 12 and Theorem 13, where
F = c, and F ′ = c0, c and `∞ respectively.

We may state some immediate applications of Theorem 14.

Example 15 Using Lemma 11 and Theorem 14, it can easily be seen that the
sets of the positive solutions x = (xn)n≥1 of each of the (SSIE) with operator,

c∆ ⊂ `∞ + s
(c)
x and c∆ ⊂ c + s

(c)
x and c∆ ⊂ (c0)∆ + s

(c)
x are determined by

(n/xn)n≥1 ∈ c. Then, the solutions of each of the (SSIE) c∆ ⊂ (c0)∆ + s0
x,

c∆ ⊂ `∞ + s0
x and c∆ ⊂ c + s0

x are determined by n/xn → 0 (n→∞). In a
similar way, the solutions of each of the (SSIE) c∆ ⊂ (c0)∆ + sx, c∆ ⊂ `∞ + sx
and c∆ ⊂ c+ sx are determined by (n/xn)n≥1 ∈ `∞.

Example 16 It can easily be seen that w0 ⊂ s0
(n)n≥1

. This implies that the

set of all sequences x = (xn)n≥1 ∈ U+ that satisfy the (SSIE) with operator

c∆ ⊂ w0 + s0
x is determined by n/xn → 0 (n→∞).

Example 17 The set of all positive sequences that satisfy the (SSIE) c∆ ⊂
cC1

+ s0
x is determined by I (cC1

, c∆, c0) = s0
(1/n)n≥1

. Then, the set of all

positive sequences that satisfy the (SSIE) c∆ ⊂ cC1
+ sx is determined by

I (cC1 , c∆, `∞) = s(1/n)n≥1
.

5.4 Solvability of the (SSIE) of the form (c0)∆ ⊂ E + F ′
x.

In this part, Theorem 13 cannot be applied since e /∈ c0. So we need to use
some results stated in Section 4.

Theorem 18 Let E ⊂ sθ for some θ ∈ s0
(n)n≥1

, be a linear space of sequences

and let F ′ = c0, c or `∞ . Then, the set of all the solutions of the (SSIE)
(c0)∆ ⊂ E + F ′x is determined by I (E , (c0)∆ , F ′) = s(1/n)n≥1

.

Proof. Let x ∈ I (E , (c0)∆ , F ′) where F ′ = c0, c or `∞. Then we have (c0)∆ ⊂
E+F ′x and since F ′ ⊂ s1 and s1 satisfies the condition in (2), we obtain E+F ′x ⊂
sθ + sx = sθ+x and (c0)∆ ⊂ sθ+x. Then we have D1/(θ+x)Σ ∈ (c0, s1) and by
the characterization of (c0, s1) we have n/ (θn + xn) = O (1) (n→∞). Using
the inclusion E ⊂ sθ with θ ∈ s0

(n)n≥1
we have n/xn = O (1) (n→∞), that is,

x ∈ s(1/n)n≥1
. We conclude I (E , (c0)∆ , F ′) ⊂ s(1/n)n≥1

. The converse follows

from Theorem 13 and Part (i) of Lemma 12, where M ((c0)∆ , s1) = s(1/n)n≥1
.
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Example 19 By Theorem 18 with θ = e, we deduce that the set of all positive
sequences x = (xn)n≥1 that satisfy the (SSIE) (c0)∆ ⊂ `∞ + F ′x is determined
by I (`∞, (c0)∆ , F ′) = s(1/n)n≥1

for F ′ = c0, c or `∞.

We consider another example, where bvp = `p∆ with p > 1 is the set of
p−bounded variations, (cf. [1]).

Example 20 Let p > 1. The set bvp = `p∆ satisfies the inclusion bvp ⊂ sθ
if and only if D1/θΣ ∈ (`p, s1). By the characterization of (`p, s1), (cf. [27,

Theorem 1.37, p. 161]) we obtain (n/θqn)n≥1 ∈ `∞. We may take θn = n1/q

with q = p/ (p− 1), which implies θ ∈ s0
(n)n≥1

, and by Theorem 18 we conclude

that the set of all positive sequences x = (xn)n≥1 that satisfy the (SSIE) (c0)∆ ⊂
bvp + F ′x is determined by I (bvp, (c0)∆ , F ′) = s(1/n)n≥1

for F ′ = c0, c or `∞.

5.5 Solvability of the (SSIE) of the form bv∞ ⊂ E + F ′
x .

In this part, we use the notation bv∞ for the difference sequence space (`∞)∆,
(cf. [1]) and we study each of the (SSIE) bv∞ ⊂ E +F ′x, where F ′ ∈ {c0, c, `∞}.

Theorem 21 Let E ⊂ s0
(n)n≥1

be a linear space of sequences. Then, the sets of

all positive sequences x = (xn)n≥1 that satisfy each of the (SSIE) bv∞ ⊂ E+sx,

bv∞ ⊂ E + s0
x and bv∞ ⊂ E + s

(c)
x are determined by

I (E , bv∞, `∞) = s(1/n)n≥1
and I (E , bv∞, c0) = I (E , bv∞, c) = s0

(1/n)n≥1
.

Proof. First, we show the identities I (E , bv∞, `∞) = s(1/n)n≥1
and I (E , bv∞, c0) =

s0
(1/n)n≥1

. From Theorem 13, where E = s0
(n)n≥1

, F = `∞ and F ′ = `∞,

and c0 respectively, we obtain I (E , bv∞, `∞) ⊂ s(1/n)n≥1
and I (E , bv∞, c0) ⊂

s0
(1/n)n≥1

. Then, by Part (iii) of Lemma 12, we have M (bv∞, `∞) = s(1/n)n≥1

andM (bv∞, c0) = s0
(1/n)n≥1

and we conclude by Part (iii) of Lemma 11. Now we

show the identity I (E , bv∞, c) = s0
(1/n)n≥1

. For this, we let x ∈ I (E , (`∞)∆ , c).

Then we have (`∞)∆ ⊂ s0
(n)n≥1

+ s
(c)
x , and by Theorem 13, where E = s0

(n)n≥1
,

F = `∞ and F ′ = c, we have I (E , (`∞)∆ , c) ⊂ s
(c)
(1/n)n≥1

and (n/xn)n≥1 ∈ c.

Now, we show the inclusion (`∞)∆ ⊂ s
(c)
(n+xn)n≥1

. We have s0
(n)n≥1

⊂ s(c)
(n+xn)n≥1

since n/ (n+ xn) = O (1) (n→∞). Then we have

xn
n+ xn

=
1

n
xn

+ 1
for all n,

and as we have just seen, we have limn→∞ n/xn = l for some scalar l and

lim
n→∞

1
n

xn
+ 1

=
1

l + 1
> 0.

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2021                   



Thus, we have shown the inclusion s
(c)
x ⊂ s

(c)
(n+xn)n≥1

. These statements imply

the inclusions (`∞)∆ ⊂ s0
(n)n≥1

+ s
(c)
x ⊂ s

(c)
(n+xn)n≥1

and since M ((`∞)∆ , c) =

s0
(1/n)n≥1

we obtain (1/ (n+ xn))n≥1 ∈ s0
(1/n)n≥1

. Then we have n/ (n+ xn)→ 0

(n→∞) and (n/xn)n≥1 ∈ c0, and we have shown the inclusion I (E , (`∞)∆ , c) ⊂
s0

(1/n)n≥1
. Finally, since M ((`∞)∆ , c) = s0

(1/n)n≥1
, by Part (i) of Lemma 11, we

conclude I (E , (`∞)∆ , c) = s0
(1/n)n≥1

. This completes the proof.

We obtain the following result, where bs = (`∞)Σ is the set of all bounded
series.

Example 22 The solutions of each of the (SSIE) bv∞ ⊂ `∞ + s
(c)
x and bv∞ ⊂

bs+ s
(c)
x are determined by I (`∞, bv∞, c) = I (bs, bv∞, c) = s0

(1/n)n≥1
.

Using similar arguments as in Example 20, we obtain the following result.

Corollary 23 Let p ≥ 1. The solutions of the (SSIE) bv∞ ⊂ bvp + s
(c)
x are

determined by I (bvp, bv∞, c) = s0
(1/n)n≥1

.

6 Solvability of the (SSIE) of the form (w∞)∆ ⊂
E + F ′x

In this part, we deal with each of the (SSIE) with operator of the form (w∞)∆ ⊂
E + s0

x, (w∞)∆ ⊂ E + sx and (w∞)∆ ⊂ E + s
(c)
x . For instance, the solvability of

the (SSIE) (w∞)∆ ⊂ s0
(n)n≥1

+ sx consists in determining the set of all positive

sequences x = (xn)n≥1 that satisfy the next statement. For every y such that

n−1
∑n
k=1 |yk − yk−1| = O (1) there are two sequences u and v with y = u + v

where limn→∞ un/n = 0 and vn/xn = O (1) (n→∞).

6.1 Determination of the sets M ((w∞)∆ , Y ) with Y ∈ {c0, c, `∞}
We state the next Lemma.

Lemma 24 We have (i) M ((w∞)∆ , s1) = s(1/n)n≥1
and (ii) M ((w∞)∆ , c0) =

M ((w∞)∆ , c) = s0
(1/n)n≥1

.

Proof. (i) We have ∆ ∈ (w∞, w∞) which implies w∞ ⊂ (w∞)∆ andM ((w∞)∆ , s1) ⊂
M (w∞, s1) = s(1/n)n≥1

. Then we have w∞ ⊂ (`∞)C1
and (w∞)∆ ⊂

[
(`∞)C1

]
∆

and since C1∆ = D(1/n)n≥1
Σ∆ = D(1/n)n≥1

I = D(1/n)n≥1
we obtain (w∞)∆ ⊂

(`∞)D(1/n)n≥1
= s(n)n≥1

. Then, by Part (ii) of Lemma 5, we obtain s(1/n)n≥1
=

M
(
s(n)n≥1

, s1

)
⊂M ((w∞)∆ , s1). So we have shown the identityM ((w∞)∆ , s1) =

s(1/n)n≥1
. (ii) First, we show the inclusion s0

(1/n)n≥1
⊂ M ((w∞)∆ , c0). As we
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have just seen, we have (w∞)∆ ⊂ s(n)n≥1
and s0

(1/n)n≥1
= M

(
s(n)n≥1

, c0

)
⊂

M ((w∞)∆ , c0). Then, by the inclusion w∞ ⊂ (w∞)∆ we deduceM ((w∞)∆ , c0) ⊂
M (w∞, c0) = s0

(1/n)n≥1
and we conclude M ((w∞)∆ , c0) = s0

(1/n)n≥1
. Now, we

show the identity M ((w∞)∆ , c) = s0
(1/n)n≥1

. As above, the inclusion w∞ ⊂
(w∞)∆ implies M ((w∞)∆ , c) ⊂M (w∞, c). Then, by Part (ii) (b) of Lemma 6,
we have M (w∞, c) = s0

(1/n)n≥1
and we obtain M ((w∞)∆ , c) ⊂ s0

(1/n)n≥1
. Us-

ing the identity M ((w∞)∆ , c0) = s0
(1/n)n≥1

and the inclusion M ((w∞)∆ , c0) ⊂
M ((w∞)∆ , c), we obtain M ((w∞)∆ , c0) = M ((w∞)∆ , c) = s0

(1/n)n≥1
. This

completes the proof.

6.2 Application to the solvability of the (SSIE) of the form
(w∞)∆ ⊂ E + F ′

x.

In the following theorem, we solve each of the (SSIE) (w∞)∆ ⊂ E + F ′x, where
F ′ ∈ {c0, c, `∞}.

Theorem 25 Let E ⊂ s0
(n)n≥1

be a linear space of sequences. Then,

(i) The set of all positive sequences x = (xn)n≥1 that satisfy the (SSIE)
(w∞)∆ ⊂ E + sx is determined by I (E , (w∞)∆ , s1) = s(1/n)n≥1

.

(ii) The sets of all positive sequences x = (xn)n≥1 that satisfy each of the

(SSIE) (w∞)∆ ⊂ E + s0
x and (w∞)∆ ⊂ E + s

(c)
x are determined by

I (E , (w∞)∆ , c0) = I (E , (w∞)∆ , c) = s0
(1/n)n≥1

. (4)

Proof. (i) By Part (i) of Theorem 21 and since (`∞)∆ ⊂ (w∞)∆ we have
I (E , (w∞)∆ , s1) ⊂ I (E , (`∞)∆ , s1) = s(1/n)n≥1

. Then, by Lemma 12 and

Lemma 24, we have M ((w∞)∆ , s1) = M ((`∞)∆ , s1) = s(1/n)n≥1
. We conclude

by Part (i) of Lemma 11, that I (E , (w∞)∆ , s1) = s(1/n)n≥1
. (ii) From Part (ii)

of Theorem 21 and Lemma 24, we obtain the next two statements, s0
(1/n)n≥1

=

M ((w∞)∆ , c0) ⊂ I (E , (w∞)∆ , c0) and I (E , (w∞)∆ , c0) ⊂ I (E , (w∞)∆ , c) ⊂
I (E , (`∞)∆ , c) = s0

(1/n)n≥1
. This implies the identities in (4) and completes the

proof.

Example 26 Since w0 ⊂ s0
(n)n≥1

, the set of all positive sequences x = (xn)n≥1

that satisfy the (SSIE) (w∞)∆ ⊂ w0 + sx is determined by xn ≥ Kn for all n
and for some K > 0. Similarly, the sets of all positive sequences x = (xn)n≥1

that satisfy the (SSIE) (w∞)∆ ⊂ w0 + s0
x is determined by limn→∞ xn/n =∞.

Example 27 By the characterization of (c, c0), we can see that D(1/n)n≥1
C−1

1 ∈
(c, c0) which implies the inclusion cC1 ⊂ s0

(n)n≥1
. This implies that the solutions

of the (SSIE) (w∞)∆ ⊂ cC1 + s0
x are determined by limn→∞ xn/n =∞.

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2021                   



In the following, we solve the (SSIE) (w∞)∆ ⊂W 0
r +s

(c)
x , where W 0

r = Drw0

for r > 0. This solvability consists in determining the set of all sequences
x = (xn)n≥1 ∈ U+ that satisfy the following statement. For every sequence

y = (yn)n≥1 for which n−1
∑n
k=1 |yk − yk−1| ≤ K for some K > 0 and for all n,

there are two sequences u and v, with y = u+v such that n−1
∑n
k=1 |uk| /rk → 0

(n→∞) and limn→∞ (vn/xn) = L for some scalar L.

Corollary 28 Let r > 0. The set Iwr of all the positive sequences x = (xn)n≥1

that satisfy the (SSIE) (w∞)∆ ⊂W 0
r +s

(c)
x is determined by Iwr =

{
s0

(1/n)n≥1
if r ≤ 1,

U+ if r > 1.

Proof. The inclusion W 0
r ⊂ s0

(n)n≥1
holds if and only if (rn/n)n≥1 ∈M (w0, c0),

and from the identity M (w0, c0) = s(1/n)n≥1
this inclusion holds for all r ≤

1. Thus, by Theorem 25 we have Iwr = s0
(1/n)n≥1

for all r ≤ 1. Let r >

1. Then we have r−n
∑n
k=1 k = o (1) (n→∞) and D1/rΣ ∈

(
s(n)n≥1

, c0

)
.

Since
(
s(n)n≥1

, c0

)
⊂ (w∞, w0) this implies D1/rΣ ∈ (w∞, w0) and the inclusion

(w∞)∆ ⊂W 0
r holds for all r > 1. This completes the proof.

7 On the solvability of the (SSIE) of the form

F∆ ⊂ E + F ′x involving the sets w0, or w.

In this section, we determine the multipliers M (w∆, Y ) and M ((w0)∆ , Y )
where Y = c0, c, or `∞. Then we apply these results to the solvability of
the (SSIE) with operator F∆ ⊂ E + F ′x where F = w0, or w and F ′ = c0, c, or
`∞.

7.1 On the multipliers of the form M (w∆, Y ) and M ((w0)∆ , Y )

In this part, we determine the multipliers M (w∆, Y ) and M ((w0)∆ , Y ) where
Y = c0, c, or `∞.

Lemma 29 (i) M ((w0)∆ , Y ) = s(1/n)n≥1
for Y = c0, c, or `∞. (ii) (a)

M (w∆, c0) = s0
(1/n)n≥1

, (b) M (w∆, c) = s
(c)
(1/n)n≥1

and (c) M (w∆, `∞) =
s(1/n)n≥1

.

Proof. (i) follows from the proof of [9, Proposition 7.3, p. 98]. (ii) (a) We
show M (w∆, c0) = s0

(1/n)n≥1
. Since c ⊂ w, then c∆ ⊂ w∆ and by Part (i) we

obtain M (w∆, c0) ⊂ M (c∆, c0) = s0
(1/n)n≥1

. Then, by Part (ii) of Lemma 24,

we have M ((w∞)∆ , c0) = s0
(1/n)n≥1

and by Part (iii) of Lemma 5, the inclusion

w∆ ⊂ (w∞)∆ implies s0
(1/n)n≥1

= M ((w∞)∆ , c0) ⊂ M (w∆, c0). So we have
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shown M (w∆, c0) = s0
(1/n)n≥1

. (ii) (b) We show M (w∆, c) = s
(c)
(1/n)n≥1

. We have

c∆ ⊂ w∆ and by Part (ii) of Lemma 12, we obtain M (w∆, c) ⊂ M (c∆, c) =

s
(c)
(1/n)n≥1

. Then we show the inclusion s
(c)
(1/n)n≥1

⊂M (w∆, c). We have w ⊂ cC1

and w∆ ⊂ (cC1)∆, and since C1∆ = D(1/n)n≥1
we obtain (cC1)∆ = s

(c)
(n)n≥1

and

we conclude w∆ ⊂ cD(1/n)n≥1
= s

(c)
(n)n≥1

. Then, by Part (iii) of Lemma 5, we

have s
(c)
(1/n)n≥1

= M
(
s

(c)
(n)n≥1

, c
)
⊂ M (w∆, c) and we have shown the identity

M (w∆, c) = s
(c)
(1/n)n≥1

. (ii) (c) From Part (i) and Remark 6.1, we obtain

s(1/n)n≥1
= M ((w∞)∆ , `∞) ⊂M (w∆, `∞) ⊂M ((w0)∆ , `∞) = s(1/n)n≥1

.

This shows the identity M (w∆, `∞) = s(1/n)n≥1
. This completes the proof.

7.2 Application to the solvability of the (SSIE) F∆ ⊂ E+F ′
x

where F = w0, or w and F ′ = c0, c, or `∞.

In this part, under some conditions on E we solve each of the (SSIE) with

operator (1) (w0)∆ ⊂ E + s0
x, (2) (w0)∆ ⊂ E + s

(c)
x , (3) (w0)∆ ⊂ E + sx and (1’)

w∆ ⊂ E + s0
x, (2’) w∆ ⊂ E + s

(c)
x , (3’) w∆ ⊂ E + sx.

We can state the following theorem.

Theorem 30 Let E be a linear space of sequences. Then we have:
(i) Assume E ⊂ sθ for some θ ∈ s0

(n)n≥1
. Then I (E , (w0)∆ , F ′) = s(1/n)n≥1

for F ′ = c0, c, or `∞.
(ii) Assume E ⊂ s0

(n)n≥1
. Then (a) I (E , w∆, c0) = s0

(1/n)n≥1
, (b) I (E , w∆, c) =

s
(c)
(1/n)n≥1

and (c) I (E , w∆, `∞) = s(1/n)n≥1
.

Proof. (i) By Part (i) of Lemma 29 we have s(1/n)n≥1
= M ((w0)∆ , c0), and

by Part (i) of Lemma 11 we have s(1/n)n≥1
⊂ I (E , (w0)∆ , c0). Then, by the

inclusion (c0)∆ ⊂ (w0)∆ and using Theorem 18, we have I (E , (w0)∆ , `∞) ⊂
I (E , (c0)∆ , `∞) = s(1/n)n≥1

. We conclude

s(1/n)n≥1
⊂ I (E , (w0)∆ , c0) ⊂ I (E , (w0)∆ , c) ⊂ I (E , (w0)∆ , `∞) ⊂ s(1/n)n≥1

and we have shown (i). (ii) follows from the inclusionsM (w∆, F ′) ⊂ I (E , w∆, F
′) ⊂

I (E , c∆, F ′) = M (c∆, F ′), and from Part (ii) of Lemma 29 and Part (ii) of
Lemma 12, where we have M (w∆, F

′) = M (c∆, F
′) for F ′ = c0, c, or `∞.

Example 31 By Part (ii) of Theorem 30, the solutions of the (SSIE) w∆ ⊂
w0 + s

(c)
x are determined by (n/xn)n≥1 ∈ c. As we have seen in Example 27,

we have the inclusion cC1 ⊂ s0
(n)n≥1

, and by Part (ii) (b) of Theorem 30, the

solutions of the (SSIE) w∆ ⊂ cC1
+ s

(c)
x are determined by (n/xn)n≥1 ∈ c.
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quence spaces and applications, Springer Singapore doi: 10. 1007/978-981-
15-9742-8, 2021.
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[20] de Malafosse, B., Rakočević, V., Series summable (C, λ, µ) and applica-
tions, Linear Algebra Appl., 436 (11) (2012), 4089-4100.

[21] de Malafosse, B., Rakočević, V., Calculations in new sequence spaces and
application to statistical convergence, Cubo A 12 (3) (2010), 117- 132.

[22] Hardy G. H., Littlewood , J. E., sur la série de Fourier d’une fonction à
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[27] Malkowsky, E., Rakočević, V., An introduction into the theory of sequence
spaces and measure of noncompactness, Zbornik radova, Matematički in-
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