The visualization of hyperspectral images in display devices, having RGB colour composition channels is quite difficult due to the high dimensionality of these images. Thus, principal component analysis has been used as a dimensionality reduction algorithm to reduce information loss, by creating uncorrelated features. To classify regions in the hyperspectral images, K-means clustering has been used to form clusters/regions. These two algorithms have been implemented on the three datasets imaged by AVIRIS and ROSIS sensors.
Keywords:
Subject: Computer Science and Mathematics - Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.