Preprint
Article

Ensemble Learning Based on Policy Optimization Neural Networks for Capability Assessment

Altmetrics

Downloads

203

Views

210

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

24 June 2021

Posted:

28 June 2021

You are already at the latest version

Alerts
Abstract
Capability assessment plays a crucial role in the demonstration and construction of equipment. To improve the accuracy and stability of capability assessment, we study the neural network learning algorithms in the field of capability assessment and index sensitivity. Aiming at the problem of over-fitting and parameter optimization in neural network learning, the paper proposes an improved machine learning algorithm—the Ensemble Learning Based on Policy Optimization Neural Networks (ELPONN) algorithm with the policy optimization and ensemble learning. This algorithm presents optimized neural network learning algorithm through different strategies evolution, and builds an ensemble learning model of multi-intelligent algorithms to assessment the capability and analyze the sensitivity of the indexes. Through the assessment of capabilities, the algorithm effectively avoids parameter optimization from entering the minimum point in performance to improve the accuracy of equipment capability assessment, which is significantly better than previous neural network assessment methods. The experimental results show that the mean relative error is 4.10%, which is better than BP, GABP, and early stopping. The ELPONN algorithm has better accuracy and stability performance, and meets the requirements of capability assessment.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated