Preprint
Article

In Utero Exposure to 9-Tetrahydrocannabinol Leads to Postnatal Catch-up Growth and Dysmetabolism in the Adult Rat Liver

Altmetrics

Downloads

199

Views

242

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 June 2021

Posted:

30 June 2021

You are already at the latest version

Alerts
Abstract
Rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to 9-tetrahydrocannabinol (9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that 9-THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg 9-THC i.p. from embryonic day (E) 6.5 through E22. Exposure to 9-THC decreased the liver to body weight ratio at birth, followed by catch-up growth by three weeks of age. At six months, 9-THC-exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACC, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interestingly, decreases in miR-203a-3p and miR-29a/b/c, both implicated in dyslipidemia, was also observed in these 9-THC-exposed offspring. Collectively, these findings indicate that prenatal 9-THC exposure results in long-term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms.
Keywords: 
Subject: Medicine and Pharmacology  -   Immunology and Allergy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated