Preprint
Article

Investigation of June 2020 Giant Saharan Dust Storm Using Remote Sensing Observations and Model Reanalysis

Altmetrics

Downloads

308

Views

536

Comments

0

This version is not peer-reviewed

Submitted:

04 July 2021

Posted:

05 July 2021

You are already at the latest version

Alerts
Abstract
This paper investigates the characteristics and impact of a major Saharan dust storm during June 14th -19th 2020 to atmospheric radiative and thermodynamics properties over the Atlantic Ocean. The event witnessed the highest ever aerosol optical depth (close to 2 during the peak of the storm) for June since 2002. The satellites and high-resolution model reanalysis products well captured the origin, spread and the effects of the dust storm. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) profiles, lower angstrom exponent values (~ 0.12) and higher aerosol index value (> 4) tracked the presence of elevated dust. It was found that the dust AOD was as much as 250-300% higher than their climatology resulting in an atmospheric radiative forcing ~200% larger. As a result, elevated warming ( 8-16 %) was observed, followed by a drop in relative humidity(2-4%) in the atmospheric column, as evidenced by both in-situ and satellite measurements. Quantifications such as these for extreme dust events provide significant insights that may help in understanding their climate effects, including improvements to dust simulations using chemistry-climate models
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated