Human Activity Recognition (HAR) is a process to automatically detect human activities based on stream data generated from various sensors, including inertial sensors, physiological sensors, location sensors, cameras, time, and many others. Unsupervised contrastive learning has been excellent, while the contrastive loss mechanism is less studied. In this paper, we provide a temperature (τ) variance study affecting the loss of SimCLR model and ultimately full HAR evaluation results. We focus on understanding the implications of unsupervised contrastive loss in context of HAR data. In this work, also regulation of the temperature(τ) coefficient is incorporated for improving the HAR feature qualities and overall performance for downstream tasks in healthcare setting. Performance boost of 1.3% is observed in experimentation.