Preprint
Article

Crystal Plasticity with Micromorphic Regularization in Assessing Scale Dependent Deformation of Polycrystalline Doped Copper Alloys

Altmetrics

Downloads

94

Views

204

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 July 2021

Posted:

12 July 2021

You are already at the latest version

Alerts
Abstract
Doped copper overpacks are planned to be utilized in the spent nuclear fuel repositories in Finland and in Sweden. The assessment of long-term integrity of the material is a matter of importance. Grain structure variations, segregation and any possible manufacturing defects in microstructure are relevant in terms of susceptibility to creep and damage from the loading evolution imposed by its operating environment. This work focuses on studying the microstructure level length-scale dependent deformation behavior of the material, of particular significance with respect to accumulation of plasticity over the extensive operational period of the overpacks. Reduced micromorphic crystal plasticity model, which is similar to strain gradient models, is used in this investigation. Firstly, the model’s size dependent plasticity effects are evaluated. Secondly, different microstructural aggregates presenting overpack sections are analyzed. Grain size dependent hardening responses, i.e., Hall-Petch like behavior, can be achieved with the enhanced hardening associated with the micromorphic model at polycrystalline level. It was found that the nominally large grain size in the base material of the overpack shows lower strain hardening potential than the fine grained region of the welded microstructure with stronger strain gradient related hardening effects. Size dependent regularization of strain localization networks is indicated as a desired characteristics of the model. The findings can be utilized to provide an improved basis for modeling the viscoplastic deformation behavior of the studied copper alloy and assess the microstructural origins of any integrity concerns explicitly by way of full field modeling.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated