Cervical cancer is a worldwide public health problem with a high rate of illness and mortality among women. In this study, we proposed a novel framework based on Faster RCNN-FPN ar-chitecture for the detection of abnormal cervical cells in cytology images from cancer screening test. We extended the Faster RCNN-FPN model by infusing deformable convolution layers into the feature pyramid network (FPN) to improve scalability. Furthermore, we introduced a global contextual aware module alongside the Region Proposal Network (RPN) to enhance the spatial correlation between the background and the foreground. Extensive experimentations with the proposed deformable and global context aware (DGCA) RCNN were carried out using the cer-vical image dataset of “Digital Human Body" Vision Challenge from the Alibaba Cloud TianChi Company. Performance evaluation based on the mean average precision (mAP) and receiver operating characteristic (ROC) curve has demonstrated considerable advantages of the proposed framework. Particularly, when combined with tagging of the negative image samples using tra-ditional computer-vision techniques, 6-9% increase in mAP has been achieved. The proposed DGCA-RCNN model has potential to become a clinically useful AI tool for automated detection of cervical cancer cells in whole slide images of Pap smear.
Keywords:
Subject: Medicine and Pharmacology - Oncology and Oncogenics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.