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Abstract: General relativity is a theory for gravitation based on Riemannian geometry, difficult to 
compatibilize with quantum mechanics. This is evident in relativistic problems in which quantum 
effects cannot be discarded. For example in quantum gravity, gravitation of zero-point energy or 
events close to a black hole singularity. Here, we set up a mathematical model to select general 
relativity geodesics according to compatibility with the uncertainty principle. To achieve this, we 
derived a geometric expression of the uncertainty principle (GeUP). This formulation identified 
proper space-time length with Planck length by a geodesic-derived scalar. GeUP imposed a mini-
mum allowed value for the interval of proper space-time which depended on the particular space-
time geometry. GeUP forced the introduction of a “zero-point” curvature perturbation over flat 
Minkowski space, caused exclusively by quantum uncertainty but not to gravitation. When applied 
to the Schwarzschild metric and choosing radial-dependent geodesics, our mathematical model 
identified a particle exclusion zone close to the singularity, similar to calculations by loop quantum 
gravity. For a 2 black hole merger, this exclusion zone was shown to have a radius that cannot go 
below a value proportional to the energy/mass of the incoming black hole multiplied by Planck 
length. 

Keywords: General relativity; Uncertainty principle; Geodesics; Black hole singularity; zero-point 
energy 
 

1. Introduction 

General Relativity (GR) describes gravitation as a dynamical space-time geometry in 
a pseudo-Riemannian manifold shaped by energy-momentum densities [1]. Its mathemat-
ical framework is highly consistent and valid in any reference frame through tensor equa-
tions. However, GR is difficult to compatibilize with the mathematics of quantum me-
chanics. Hence, how the geometry of gravitation and quantum processes interact is still 
unclear, although some theories such as loop quantum gravity can integrate their meth-
odologies [2]. 

Some GR solutions involve regions of space-time with infinite curvature, such as 
black hole singularities [3-5]. As a geometry, infinite curvature is not in itself problematic 
or unphysical, and a black hole singularity represents just a shape of space-time. However, 
a black hole singularity creates a fundamental physical problem because it would not be 
possible to trace back the history of any particle that ends up in it. This irreversible process 
contributes to the black hole information paradox [6].  

It could be nevertheless argued that particles in a black hole singularity do differ in 
proper time. However, proper time tends to infinity closer to the singularity, and it is not 
defined right at the singularity. Therefore, information is irreversibly lost if singularities 
are not restricted by other fundamental processes. As particles get close to a black hole 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2021                   doi:10.20944/preprints202107.0646.v2

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202107.0646.v2
http://creativecommons.org/licenses/by/4.0/


 2 
 

 

singularity, quantum physics can provide a solution. Heisenberg’s uncertainty principle 
[7] has been applied in loop quantum gravity for this purpose as a source of a repulsion 
force that prevents particles from reaching the singularity [8]. The matter repelled from it 
would form a so-called “Planck star”. An “equivalent” concept is used in string theory 
with the “fuzzball” structure [9]. 

The non-linearity of GR mathematics is also in sharp contrast with the linearity of 
quantum mechanics. This also introduces complications of its own. For example, there are 
difficulties in co-variant formulations of a general uncertainty principle [10]. As energy is 
also a source of gravitation in GR, it is difficult to understand how quantum mechanical 
processes such as zero-point energy fluctuations influence the space-time geometry. This 
difficulty complicates quantum gravitation theories. 

Here we develop a co-variant relativistic geometric formulation of the uncertainty 
principle within the mathematical framework of GR. This resulted in a geometric principle 
of uncertainty (GeUP) for particles in geodesics. This was achieved by generating a rela-
tivistic tensor expression for the inequalities of the classical uncertainty principle. This 
tensor equation was then converted in an inequality containing only geometric terms. This 
inequality identified Planck length with the uncertainty of relativistic proper space-time 
distance through a scalar derived from geodesic geometries. Then GeUP was applied to a 
particle in Minkowski space in the absence of gravitation. The imposition of GeUP re-
quired the need for a “zero-point” curvature perturbation. GeUP was finally applied to a 
particle in the Schwarzschild metric, with special focus on the singularity and event hori-
zon. An exclusion zone from the singularity was obtained as a solution. This exclusion 
zone provided a minimum threshold value around the singularity of comparable order to 
the estimated radius for Planck stars. 

2. Derivation of a relativistic tensor expression for the uncertainty principle inequali-
ties  

For simplicity, c and the particle mass were both set to 1. Tensor notation was used 
throughout the paper, which includes representation of generalized contravariant coordi-
nates as X. For clarity, the temporal coordinate X0 was represented as “t” in some specific 
cases. 

The classical uncertainty principle is represented by two separate inequalities. 

|∆𝒑ሬሬ⃗ ||∆𝒙ሬሬ⃗ | ≥
ℏ

𝟐
    ;  |∆𝑬|ห∆𝒙𝟎ห ≥

ℏ

𝟐
        (𝟏) 

Small “p” represents non-relativistic momentum, parametrized by coordinate time. 
These two inequalities can be written in tensor notation, following these identities: 

|∆𝒑ሬሬ⃗ ||∆𝒙ሬሬ⃗ | = หඥ∆𝒑𝒎∆𝒙𝒎 ∆𝒑𝒎∆𝒙𝒎ห = |∆𝒑𝒎∆𝒙𝒎|    

 ∆𝑬 ≡ ∆𝑷𝟎 

In units of c set to 1, energy can be identified with the temporal component of the 
relativistic 4-momentum vector, which is parametrized by proper time “𝝉”. From now on, 
the relativistic momentum will be represented by capital “P”.  Inequalities 1 then take 
the following form in tensor notation: 

|∆𝒑𝒎∆𝑿𝒎| ≥
ℏ

𝟐
    ; ห∆𝑷𝟎∆𝑿𝟎ห ≥

ℏ

𝟐
                   (𝟐) 
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                m1, 2, 3 

To convert non-relativistic momentum to its relativistic counterpart parametrized by 
proper time, the gamma factor has to be introduced. The same correction was included in 
the energy-time inequality so that both can be merged. 

ฬ
𝟏

𝜸
∆𝑷𝒎∆𝑿𝒎ฬ ≥

ℏ

𝟐
     ;    ฬ

𝟏

𝜸
∆𝑷𝟎∆𝑿𝟎ฬ ≥

ℏ

𝟐𝜸
      (𝟑) 

Adding inequalities 3 we obtain after some re-arrangements: 

ห∆𝑷𝒎∆𝑿𝒎 + ∆𝑷𝟎∆𝑿𝟎ห ≥ (𝟏 + 𝜸)
ℏ

𝟐
           (𝟒) 

For non-relativistic particles, the gamma factor is generally 1, which will lead to a 
standard general form of the non-relativistic uncertainty principle: 

ห∆𝑷𝒎∆𝑿𝒎 + ∆𝑷𝟎∆𝑿𝟎ห ≥ ℏ                                 (𝟓) 

The merged inequality can then be stated as a contraction of differential changes in 
4-momentum and 4-position vectors as follows:  

ห𝒅𝑷𝝁𝒅𝒙𝝁ห ≥
ℏ

𝟐
                                                     (𝟔) 

                 0, 1, 2, 3 

For simplification, the relativistic correction term in inequality 4 was removed as it 
can be easily incorporated when needed. We then re-expressed the inequality in terms of 
Planck length: 

ห𝒅𝑷𝝁𝒅𝒙𝝁ห ≥
 𝓵𝒑 

𝟐

𝟐𝑮
                                               (𝟕) 

The inequality was then further parametrized as a function of differential changes in 
proper time as follows: 

ฬ
𝒅𝑷𝝁

𝒅𝝉
𝒅𝝉 

𝒅𝒙𝝁

𝒅𝝉
𝒅𝝉ฬ ≥

𝓵𝒑 
𝟐

𝟐𝑮
                                 (𝟖) 

This allows de re-formulation in terms of the co-variant proper velocity components 
(U), the change in 4-momentum with proper time, and the introduction of the invariant 
quadratic form of proper space-time distance. It has to be noted that this operation makes 
the inequality undefined for null proper time. 

ฬ
𝒅𝑷𝝁

𝒅𝝉  
𝑼𝝁 𝒅𝝉𝟐ฬ ≥

𝓵𝒑 
𝟐

𝟐𝑮
                                      (𝟗) 

This expression has to be interpreted as an inequality between the uncertainties of 
proper space-time length and 4-momentum change. In the non-quantum limit where 
Planck length is considered 0, equation 9 eliminates this uncertainty by being equated to 
0. In this case, proper space-time and 4-momentum change (“proper force”) can be known 
with infinite precision. 
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3. Derivation of a relativistic geometric form of the uncertainty principle  

In the framework of GR, space-time geodesic trajectories for particles are expressed 
in terms of proper velocity components (U), which can be identified with proper momen-
tum considering a unit mass in the equations: 

𝑑𝑈ఓ

𝑑𝜏
= − ఈఉ

  ఓ

 
𝑈ఈ𝑈ఉ

 ≡
𝑑𝑃ఓ

𝑑𝜏
 

The expression for the change of proper momentum above can be substituted in in-
equality 9:   

ቚ− ఈఉ
  ఓ

 
𝑈ఈ𝑈ఉ𝑈ఓ 𝑑𝜏ଶቚ ≥

ℓ௣ 
ଶ

2𝐺
                                      (10)           

This resulting expression is fully dependent on the specific geometry of relativistic 
space-time by Christoffel connectors contracted with proper velocities. These contractions 
allow inequality 10 to be further re-arranged as the product of two scalars by defining a 
“Geometric scalar”,or Ggeo: 

𝐺௚௘௢ ≡ −2𝐺 𝑈ఓ ఈఉ
 ఓ

 
𝑈ఈ𝑈ఉ

                                                         

ห𝐺௚௘௢
  𝑑𝜏ଶห ≥ ℓ௣  

ଶ                                                          (11)           

This relationship makes a direct identification between the uncertainty in proper 
space-time length with Planck length, by a scale factor that depends on the geodesic. This 
inequality imposes a minimum degree of uncertainty in proper space-time that depends 
on the geometry. Therefore, proper time represented in units of Planck length has as the 
lowest limit the inverse of the absolute value of the geometric scalar (without the relativ-
istic correction as in inequality 4): 

ቤ
𝒅𝝉𝟐 

𝓵𝒑  
𝟐 ቤ ≥ ห𝑮𝒈𝒆𝒐

ି𝟏 ห                                              (12) 

This inequality represents the relationship between proper space-time and Planck 
length which is at the core of GeUP. 

4. Application of the geometric uncertainty principle to geodesics in flat Minkowski 
space  

GeUP was applied to flat Minkowski space for a test particle at rest. As an immediate 
consequence, inequality 11 cannot be met because the geodesic scalar is 0 by the null 
Christoffel connectors.  

 ఈఉ
  ఓ

= 0   →  𝐺௚௘௢ = 0                                       

ห𝐺௚௘௢
  𝑑𝜏ଶห = 0 ≥ 𝑙௣  

ଶ ?                                 (13)  

Flat Minkowski space leads to a contradiction (inequality 13) with the exception of 
the non-quantum limit in which Planck length is considered 0. To meet the GeUP condi-
tion, Minkowski space has to deviate from flat space. To obtain general allowed solutions 
for metric tensors is challenging because the perturbation can be a function of all the co-
ordinates, with cross-terms and uncertainties involving all coordinates. Hence, to study 
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the main consequences, here we used a weak field approximation approach, adding a 
differential perturbation to the Minkowski metric represented as eta: 

𝑔ఓ = 
ఓ + 𝜀ఓ                                        (14) 

In our example, the perturbation depends solely on the temporal component to fulfil 
conditions of spatial homogeneity and isometry. In this special case, Planck constant will 
be explicitly used in equation 11. For a particle at rest only the temporal component of its 
proper velocity will be non-zero. Likewise, only coordinate time will contribute to proper 
time. The inequality takes the following form: 

ቚ−2𝑈଴ ଴଴
  ଴

 
𝑈଴𝑈଴

  (−1 − 𝜀) 𝑑𝑡ଶቚ ≥ ℏ     (15)     

The calculation of the Christoffel symbol is straightforward because only the time-
time component of the metric tensor has a dependency in the time coordinate but not in 
spatial coordinates. 

 ଴଴
  ଴ =

1

2
𝑔଴଴(𝜕଴𝑔଴଴) =

−1

2(1 + 𝜀)
𝜕଴(−1 − 𝜀) =

𝜕଴𝜀

2(1 + 𝜀)
   (16) 

After introducing the term (16), the inequality 15 can be solved as follows: 

ቤ−2𝑈଴𝑈଴
 

 
𝑈଴

 

𝜕଴𝜀

2(1 + 𝜀)
 

 (−1 − 𝜀) 𝑑𝑡ଶቤ ≥ ℏ   ; 

                  |−𝑈଴
 𝜕଴𝜀   𝑑𝑡ଶ| ≥ ℏ                                                 (17)  

This inequality can be re-expressed by simplifying the derivative of the perturbation 
field by multiplication with dt, and including explicitly the mass of the particle which 
converts proper velocity to the temporal component of the 4-momentum vector:  

|𝑃଴
 𝑑 𝜀   𝑑𝑡  | ≥ ℏ                                                                       (18) 

This expression is equivalent to the classical uncertainty principle for time-energy. 
The time component of the 4-momentum of the particle can best be expressed in terms of 
the particle´s energy. In this expression the relativistic factor omitted in inequality 4 will 
also be re-introduced with a value of 2 for a rest, non-relativistic particle, leading to: 

  ห𝐸  𝑑 𝜀   𝑑𝑡  ห ≥ 2ℏ    ;   |𝑑𝜀 | ≥ ฬ
2ℏ

 𝐸 𝑑𝑡  
ฬ                                   (19)    

E corresponds in this particular example to the mass-energy of the particle because 
the particle at rest does not have kinetic energy. We can express the differentials as inter-
vals to represent uncertainties, and express the inequality as an equation for the lowest 
bound value that would agree with GeUP.  

𝜀 = 𝜀଴ +
2ℏ

𝐸 ∆𝑡
                                                                          (20) 

The initial value for the perturbation field can be chosen as 0, which would corre-
spond to no correction over the Minkowski metric. This leads to an expression for the 
components of the Minkowski metric as follows: 
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𝑔଴଴ = −1 −
2ℏ

𝐸 ∆𝑡
     ;  𝑔௠௠ = 1 +

2ℏ

𝐸 ∆𝑡
                       (21) 

          m1, 2, 3 

This solution resembles a zero-point energy in a way that it arises from the necessity 
to fulfil the uncertainty principle, and it is significant under very small intervals of time. 
The non-quantum limits correspond to massive particles and events over large intervals 
of time, which make the perturbation go to 0 and recover the Minkowski metric. This 
perturbation is not caused by gravitation from the mass of the particle, but from the GeUP 
principle. 

 5. Application of the geometric uncertainty principle to Schwarzschild´s metric  

GeUP was applied to Schwarzschild’s metric in spherical coordinates, with a - + + 
+ metric signature. The black hole singularity is present at the 0 radial position. Right at 
the singularity, all spatial coordinates for the particle are known with absolute certainty, 
with the exception of the temporal component. To find out if this condition is sufficient to 
overcome the principle of uncertainty, inequality 11 was applied. Absolute certainty in 
position corresponds to null proper velocities of spatial components. Only the temporal 
component of the proper velocity plays a contribution, whereby only a Christoffel con-
nector survives in the geodesic scalar. However, this is a null Christoffel connector in the 
Schwarzschild metric:  

                 𝑑𝑅 = 𝑑𝜃 = 𝑑𝜑 = 0 ; 

ห−2𝐺 𝑈଴଴଴
଴

 
𝑈଴𝑈଴

  𝑑𝜏ଶห ≥ ℓ௣  
ଶ   ;   0 ≥ ℓ௣ 

ଶ ?                           (22)   

The result is a contradiction. Geodesics with known spatial coordinates but unde-
fined temporal coordinates still contradict GeUP. Therefore, a particle cannot be placed in 
the point singularity without violating the uncertainty principle. 

Solutions that satisfy the inequality 11 in this metric are highly complex and non-
trivial, involving the interplay between all the coordinates through Christoffel connectors, 
and uncertainties in all coordinates. In this paper, we chose geodesics with constant an-
gular and temporal coordinates, but with varying radial position. This constitutes a sim-
plified “snapshot” in coordinate time, allowing only uncertainty in the radial position. 
Hence, this selection of geodesics will also make the proper velocity of the particle to have 
only a radial component as shown below: 

𝑑𝑡 = 𝑑𝜃 = 𝑑𝜑 = 0  →   𝑈଴ = 𝑈ఏ = 𝑈ఝ = 0   

For simplification, a test unit mass will be considered and c will be set to 1. The se-
lection of these initial conditions simplifies the calculation of the geodesic scalar as only 
the radial term is non-zero, giving a result of: 

𝐺௚௘௢
 = −2𝐺𝑈ோோோ

ோ

 
𝑈ோ𝑈ோ

 = −2𝐺𝑈ோ𝑈ோோோ
ோ

𝑈ோ = 2𝐺ோோ
ோ 𝑈ோ 

𝐺௚௘௢
 =

𝐺𝑅௦𝑈ோ

𝑅(𝑅 − 𝑅௦)
                                                                 (23)  

And proper time is, 
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𝑑𝜏ଶ =
𝑅

𝑅 − 𝑅௦
𝑑𝑅ଶ                                                                 (24) 

Rs indicates Schwarzschild’s radius. With the terms in equations 23 and 24, the ine-
quality 11 can be then solved leading to: 

 𝑑𝑅ଶ ≥ ቤ(𝑅 − 𝑅௦)ଶ
ℓ௣

ଶ

𝐺  𝑅௦𝑈ோቤ                                          (25) 

This inequality solves the uncertainty in radial position squared as a function of ra-
dial distance. This equation can be re-written in a more concise form and also re-incorpo-
rating the particle mass “m” into the proper velocity, with M representing the mass gen-
erating the gravitational field: 

𝒅𝑹𝟐 ≥ ቤ
𝟐𝑴 

 

𝑷𝑹 ൬
𝑹

𝑹𝒔
− 𝟏൰

𝟐

𝓵𝒑 
𝟐  ቤ                                    (26) 

5.1. Uncertainty in the interior of the black hole. 

Inequality 26 sets the lower threshold for radial uncertainty to a term that is propor-
tional to Planck length and multiplied by a function of the radial position. Considering 
the lowest allowed uncertainty condition in the geodesics, we reach two conclusions. First, 
it is defined at the singularity (R=0). Second, as the particle approaches the singularity, the 
uncertainty in radial position of the particle increases. A relative coefficient of threshold 
uncertainty can then be calculated as follows: 

𝐶𝑈 =
𝑑𝑅

𝑅
= ±ඨ

2𝑀 
 

𝑃ோ
൬

1

𝑅௦
−

1

𝑅
൰

 

ℓ௣    
                       (27) 

The coefficient of uncertainty in radial position within the black hole exponentially 
grows as the particle approaches the singularity (Figure 1), tending to infinity.  

 
Figure 1. Black hole exclusion zone. The figure represents the function from equation 27 with rel-
ative values for the radial distance and coefficients to help visualization. The relative uncertainty in 
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radial position with radial distance is plotted, dividing the phase space in two sections. The blue 
section identifies geodesics that violate the GeUP (exclusion zone). Relative uncertainties for al-
lowed geodesics grow exponentially towards the singularity (open dot at R=0). The zones in white 
within the black hole interior or its exterior indicate allowed geodesics in which particles can be 
found with at least the relative uncertainties indicated by the curves. 

Importantly, inequality 26 does have a minimum allowed threshold value for uncer-
tainty right in the singularity: 
 

𝑑𝑅ଶ(𝑅଴) ≥
2𝑀 

 

𝑃ோ
ℓ௣ 

ଶ                                                                 (28)  
 
It is important to note that the uncertainty in position is proportional to Planck 

length, but further modified by the momentum of particles. Close to the singularity there 
is an “exclusion zone” given by inequality 28, below which no particle can be found with 
definite position (Figure 1). In addition, most particles close to the singularity will be rel-
ativistic as well, so the relativistic correction needs to be specified in inequality 28, leaving:  
 

𝒅𝑹𝟐(𝑹𝟎) ≥ ൬𝟏 +
𝑬 

𝒎
൰

𝟐𝑴 
 

𝑷𝑹
𝓵𝒑 

𝟐                                         (29) 
 

The uncertainty in radial position of particles reduces as the radial distance ap-
proaches Schwarzschild’s radius (Figure 1 and inequality 26). From this place onwards, 
the uncertainty in position steadily increases as the radial position goes to infinity. Taking 
the limit of inequality 26 to infinity brings dR to infinity, although this mathematical limit 
is unphysical. The radial distance that cancels out Planck length in inequality 26 is of the 
order of 3 light-years, which could be considered a physical infinity in the Schwarzschild 
metric. Indeed, the coefficient of uncertainty at this position is of the order of 10-29.  

Therefore, at radial distances much larger than Planck distance, this latter value can 
be regarded as 0, reaching the classical and relativistic limits where the particle can have 
both infinitely precise momentum and position. 

 

5.2. Merger of two black holes 
Within the limits of our approximation to geodesics with only radial dependence, 

we can evaluate an incoming particle with a mass comparable to the black hole´s mass at 
near relativistic velocities. These conditions can be then applied to inequality 26 in units 
of c set to 1, giving: 
 

 𝑃ோ ≈ 𝑀 ;  𝑅 = 0                                                             
𝑑𝑅ଶ ≥ 2ℓ௣ 

ଶ                                                                   (30) 
 
Hence, the singularity exclusion radius cannot get lower than Planck length. How-

ever, the merging of black holes is a highly energetic process, and the relativistic correc-
tion cannot be discarded. This will lead to the final result in units of c set to 1 as: 

 

𝒅𝑹𝟐 ≥ ൬𝟏 +
𝑬 

𝑴
൰ 𝟐 𝓵𝒑 

𝟐 ≈
𝟐𝑬 

𝑴
𝓵𝒑 

𝟐                              (31) 
 
The exclusion value is still proportional to the Planck length, but it is dependent on 

the ratio of between the total energy of the incoming black hole and its mass-energy. As 
this ratio will always be higher than 1, in no case the radius of the exclusion zone will get 
smaller than the Planck length. Following the merger, the singularity exclusion zone will 
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increase to accommodate the additional mass together with the new Schwarzschild ra-
dius, incorporating its information as a growth in the radius of the exclusion zone, leaving 
inequality 26 as:  

 

𝑑𝑅ଶ ≥ ቤ
4𝑀 

 

𝑃ோ ൬
𝑅

𝑅௦
− 1൰

ଶ

𝑙௣ 
ଶ  ቤ                                 (32) 

 
Therefore, the uncertainty principle could be considered the source of a repulsion 

force which becomes very large close to the singularity. In this paper, we associate this 
force to the geometry of the geodesics into a geometric uncertainty principle. 

 

5. Discussion 

Here we have expressed the principle of uncertainty in tensor form, which has al-
lowed its reformulation in terms of geometric parameters consistent with both GR and 
quantum mechanics. Indeed, using our mathematical model we found that there is a limit 
for the length of relativistic space-time distance restricted by Planck lengths. It is im-
portant to remark that this observation agrees with theoretical calculations in loop quan-
tum gravity models [8]. This relationship is also “fuzzy”, relating the uncertainty of 
proper space-time distance with Planck length through a scaling factor coming from the 
specific geometry of the GR geodesics. 

To test GeUP and understand its immediate consequences, we applied the equation 
to the simplest case: A particle at rest in Minkowski flat space. GeUP forced the need of 
introducing a “zero-point curvature” field so that geodesics comply with the uncertainty 
principle. For computational simplicity, and to comply with isometry and homogeneity, 
we introduced a weak-field perturbation that was dependent only on the time coordinate. 
We found a similar result to the classical energy-time uncertainty in quantum mechanics: 
Events taking place in small intervals of time are linked to large energy fluctuations. GeUP 
forced the perturbation to increase inversely proportional to the time length interval. In 
the classical/relativistic limit of long intervals of time, the correction to the metric can be 
discarded. Interestingly, it also depended on the mass of the particle. The larger the mass, 
the weaker the perturbation. This result highlighted that the “zero-point curvature” is ex-
clusively a quantum effect not caused by gravitation. This can be significant for scenarios 
of quantum gravity, for which gravitational-like effects may appear as the result of GeUP 
which could be superimposed on effects by standard gravitation. It is interesting to re-
mark that propagation of gravitational waves as a solution in GR [11,12] provides weak 
field perturbations that comply with GeUP.  

Then we tested GeUP in a more complex scenario. We found that applying GeUP to 
the Schwarzschild´s metric required a computational power beyond the scope of the cur-
rent paper. For a full solution, allowed geodesics have to be found in a phase space with 
4 coordinate positions, 4 coordinate uncertainties, and multiple cross-terms. Therefore, to 
draw physically relevant solutions, we first demonstrated that placing a particle right in 
the black hole singularity violates GeUP. This is important, because particles could be 
theoretically singled-out on the basis of their different coordinate times at the singularity. 
As such, particles in the singularity could comply with a general uncertainty principle [10] 
because they would not be in the same states. But interestingly, GeUP selects null Chris-
toffel connectors in the Schwarzschild’s metric right in the singularity. This condition nul-
lifies inequality 22, leading to a contradiction. Once this point was clear, we selected geo-
desics which only depended in radial position. We have to stress that this system loses the 
dynamics of the particles, but provides important insight. Application of GeUP to the 
black hole immediately identified a region close to the singularity below which there 
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would be a violation of GeUP for particles with defined position. This region consists of a 
black hole exclusion zone, and the minimum radius was found to be proportional to 
Planck length. Nevertheless, our inequalities do not necessarily forbid particles to enter 
this zone. The inequalities shown here have to be interpreted as uncertainties in proper 
position, whereby particles can be more or less de-localized. In this regard, the exclusion 
zone can be thought of a place with very high uncertainty in position, with “fuzzy” parti-
cles which may be equivalent to the “fuzzballs” found in string theory [9].  

From a more classical quantum mechanics point of view, particles close to the singu-
larity will have an uncertainty in position so large that they would appear to be repelled 
from the singularity. Our results are similar to those in loop quantum gravity, which 
showed that matter would be distributed spherically with a radius several orders of mag-
nitude higher than Planck length [2,8]. This repulsion “uncertainty force” avoids single-
point singularities leading to the theoretical formation of a Planck star. Hence, the Planck 
star would be made of the space taken by all GeUP-allowed geodesics found in the current 
model. Carrying out calculations on the minimum radial threshold for the exclusion zone 
corresponding to a stellar mass black hole, inequality 28 gives a rough approximate value 
(without adding specific corrections) on the order of 10-16 cm. A rough estimation on the 
diameter of a Planck star by loop quantum gravity gives a value of about 10-10 cm [8]. 
Although there is a difference of over 6 orders of magnitude between both calculations, 
this difference can be accounted by further fine tuning of the adequate corrections and 
parameters to the equations both here and those from loop quantum gravity. Neverthe-
less, both calculations provide sizes larger than Planck length by several orders of magni-
tude.  

We also tested our model in a highly energetic process, such as a 2-black hole merger. 
Again, it has to be remarked that we lost the dynamics by our choice of geodesics. Never-
theless, important conclusions could be obtained. First, in no case the radius of the exclu-
sion zone will go below Planck length. Second, after the merger there surface of the exclu-
sion zone will grow, allowing the accommodation of the extra information carried by the 
incoming black hole. 

Summarizing, we have derived a geometric formulation for the uncertainty principle 
that selects geodesics complying with this fundamental quantum law. The application of 
this restriction will be helpful in general relativity problems for which quantum effects 
cannot be discarded.  
 

Author Contributions: Conceptualization, D.E. and G.K.; Methodology, D.E; Resources, D.E. and 
G.K. All authors have read and agreed to the published version of the manuscript.”  

Acknowledgments: The authors thank Dr Funfelinski for critical insight. 

Funding: D.E. is funded by a Miguel Servet Fellowship (ISCIII, Spain, Ref CP12/03114). 

Conflicts of Interest: The authors declare no conflict of interest.  

References 
1. Einstein, A. Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 1916, 49, 769–822. 
2. Rovelli, C. Loop Quantum Gravity. LivingRev.Rel. 1998, 1, doi:10.12942/lrr-1998-1. 
3. Schwarzschild, K. On the gravitational field of a mass point according to Einstein´s theory. 

Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1916, 1916, 189-196. 
4. Teukolsky, S.A. The Kerr metric. Class. Quantum Grav. 2015, 32, 124006. 
5. Townsend, P.K. Black holes. arXiv:gr-qc/9707012 1997. 
6. Dai, X. The Black Hole Paradoxes and Possible Solutions. J. Phys.: Conf. Ser. 2020, 1634, 012088. 
7. Ozawa, M. Heisenberg's original derivation of the uncertainty principle and its universally valid reformulations. 

arXiv:1507.02010 215. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2021                   doi:10.20944/preprints202107.0646.v2

https://doi.org/10.20944/preprints202107.0646.v2


 11 
 

 

8. Rovelli, C.; Vidotto, F. Planck stars. International Journal of Modern Physics D. 2014, 23, 1442026. 
9. Mathur, S.D. The Fuzzball proposal for black holes: An Elementary review. Fortsch.Phys. 2005, 53, 793-827. 
10. Todorinov, V.; Bosso, P.; Das, S. Relativistic generalized uncertainty principle. Annals Phys. 2019, 405, 92-100, 

doi:10.1016/j.aop.2019.03.014. 
11. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, 

V.B. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. ApJ 2017, 
848, L13. 

12. Cornish, N.; Blas, D.; Nardini, G. Bounding the Speed of Gravity with Gravitational Wave Observations. Phys. Rev. Lett. 
2017, 119, 161102. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2021                   doi:10.20944/preprints202107.0646.v2

https://doi.org/10.20944/preprints202107.0646.v2

