Preprint
Article

Sustained-Release and pH-Adjusted Alginate Microspheres-Encapsulated Doxorubicin Inhibit the Viabilities in Hepatocellular Carcinoma-Derived Cells

Altmetrics

Downloads

530

Views

638

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 July 2021

Posted:

29 July 2021

You are already at the latest version

Alerts
Abstract
The objective of this study aimed to develop biodegradable calcium alginate microspheres carrying doxorubicin (Dox) at the micrometer-scale for sustained-release and the capacity of pH regulatory for transarterial chemoembolization. Ultrasonic atomization and CaCl2 cross-linking technologies were used to prepare the microspheres. A 4 by 5 experiment was first designed to identify imperative parameters. The concentration of CaCl2 and the flow rate of the pump were found to be critical to generate microspheres with a constant volume median diameter (~ 39 m) across 5 groups with different alginate:NaHCO3 ratios using each corresponding flow rate. In each group, the encapsulation efficiency was positively correlated to the Dox-loaded efficiency. Fourier-transform infrared spectroscopy showed that NaHCO3 and Dox were step-by-step incorporated into the calcium alginate microspheres successfully. Microspheres containing alginate:NaHCO3 = 1 exhibited rough and porous surfaces, high Young’s modulus and hardness. In each group with the same alginate:NaHCO3 ratio, the swelling rates of microspheres were higher in PBS containing 10% FBS compared to those in PBS alone. Microspheres with relative high NaHCO3 concentrations in PBS containing 10% FBS maintained better physiological pH and higher accumulated Dox release ratios. In two distinct hepatocellular carcinoma-derived cell lines, treatments with microspheres carrying Dox demonstrated that the cell viabilities decreased in groups with relative high NaHCO3 ratios in time- and dose-dependent manners. Our results suggested that biodegradable alginate microspheres containing relative high NaHCO3 concentrations improved the cytotoxicity effects in vitro.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated