Preprint
Article

Gap Reconstruction in Optical Motion Capture Sequences Using Neural Networks

Altmetrics

Downloads

198

Views

217

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

02 August 2021

Posted:

03 August 2021

You are already at the latest version

Alerts
Abstract
Optical motion capture is a mature contemporary technique for the acquisition of motion data, alas it is non-error-free. Due to technical limitations and occlusions of markers, gaps might occur in such recordings. The article reviews various neural network architectures applied for gap filling problem in motion capture sequences within FBM framework providing the representation for body kinematic structure. The results are compared with interpolation and matrix completion methods. We found out, that for longer sequences simple linear feedforward neural networks can outperform the other, sophisticated architectures. We were also able to identify, that acceleration and monotonicity of input sequence are the parameters that have a notable impact on the obtained results.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated