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Abstract The basic idea is to expand the completed zeta function ξ(s) in
MacLaurin series (infinite polynomial), which can be further expressed as
infinite product by conjugate complex roots. Then, according to Lemma 3,
Lemma 4, and Lemma 5, the functional equation ξ(s) = ξ(1 − s) leads to
(s−αi)

2 = (1− s−αi)
2 with solution αi =

1
2 , where αi is the real part of the

zeros of ξ(s), i.e., si = αi±jβi, i ∈ N. Thus a proof of the Riemann Hypothesis
is achieved.
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1 Introduction and the problem description

It has been 162 years since the Riemann Hypothesis (RH) was proposed in
1859 [1]. Many efforts and achievements have been made towards proving the
hypothesis, but it is still an open problem [2−3].

The Riemann zeta function is the function of the complex variable s, de-
fined in the half-plane ℜ(s) > 1 by the absolutely convergent series [2]

ζ(s) =
∞∑

n=1

1

ns
(1)
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2 A Proof of Riemann Hypothesis

Riemann showed how to extend zeta function to the whole complex plane C
by analytic continuation

ζ(s) =
πs/2

Γ (s/2)
{ 1

s(s− 1)
+

∫ ∞

1

(x
s
2−1 + x− s

2−
1
2 ) · (θ(x)− 1

2
)dx} (2)

where θ(x) =
∑∞

−∞ e−n2πx, Γ being the Gamma function in the following
equivalent form

1

Γ (s)
= s · eγs

∞∏
n=1

(1 +
s

n
)e−s/n (3)

where γ is Euler’s constant.
The connection between the zeta function and prime numbers can be es-

tablished through the well-known Euler product.

ζ(s) =
∞∑

n=1

1

ns
=

∏
p

(1− p−s)−1,ℜ(s) > 1 (4)

the product being over the prime numbers p.

As shown by Riemann, ζ(s) extends to C as a meromorphic function with
only a simple pole at s = 1, with residue 1, and satisfies the following functional
equation

π− s
2Γ (

s

2
)ζ(s) = π− 1−s

2 Γ (
1− s

2
)ζ(1− s) (5)

The Riemann zeta function ζ(s) has zeros at the negative even integers−2,−4,−6,−8, · · ·
and one refers to them as the trivial zeros. The other zeros of ζ(s) are the
complex numbers, i.e., non-trivial zeros [2].

About the non-trivial zeros of ζ(s), the following results are well estab-
lished [4].

Lemma 1: Non-trivial zeroes of ζ(s), noted as ρ = α+ jβ have the following
properties
1) The number of non-trivial zeroes is infinity;
2) β ̸= 0;
3) 0 6 α 6 1;
4) ρ, ρ̄, 1− ρ̄, 1− ρ are all non-trivial zeroes.

For further study, a completed zeta function ξ(s) is defined as

ξ(s) =
1

2
s(s− 1)π− s

2Γ (
s

2
)ζ(s) (6)

It is well-known that ξ(s) is an entire function of order 1.

Replacing s with 1 − s in Eq.(6), and considering Eq.(5), we have the
following functional equation
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A Proof of Riemann Hypothesis 3

ξ(s) = ξ(1− s) (7)

Considering the definition of ξ(s), i.e., Eq. (6), and recalling Eq.(3), the
trivial zeros of ζ(s) are canceled by the poles of Γ ( s2 ). The zero of s − 1 and

the pole of ζ(s) cancel; the zero s = 0 and the pole of Γ ( s2 ) cancel
[5−6]. Thus,

all the zeros of ξ(s) must be the nontrivial zeros of ξ(s), and vice versa. Then
we have the following Lemma 2.

Lemma 2: Zeros of ξ(s) coincide with nontrivial zeros of ζ(s).

According to Lemma 2, the following two statements for RH are equivalent.

Statement 1 of RH: The non-trivial zeros of ζ(s) have real part equal to 1
2 .

Statement 2 of RH: All the zeros of ξ(s) have real part equal to 1
2 .

To prove the RH, the natural thinking is to estimate the number of zeros of
ζ(s) in a closed area according to the Argument Principle. Along this train of
thought, there are some famous research works. Let N(T ) denote the number
of zeros of ζ(s) inside the rectangle: 0 ≤ α ≤ 1, 0 ≤ β ≤ T , and let N0(T )
denote the number of zeros of ζ(s) on the line α = 1

2 , 0 ≤ β ≤ T . Selberg
[7] proved that there exist positive constants c and T0, such that N0(T ) >
cN(T ), (T > T0), later on, Levinson [8] proved that c ≥ 1

3 , and Conrey [9]

proved that c ≥ 2
5 .

Two types of infinite expansions of ξ(s), i.e., MacLaurin series (infinite
polynomial) and infinite product expansion by conjugate roots, will be adopted
in this paper to open another door to the proof of RH.

The idea is motivated by Euler’s work on

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · = π2

6
(8)

This interesting and famous result is deduced mainly based on the above-
mentioned two types of infinite expansions

sinx

x
= 1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

= (1− x2

π2
)(1− x2

4π2
)(1− x2

9π2
) · · ·

(9)

This paper is also motivated by the fact that ξ(s) can be expressed by the
following infinite product, which was first proposed by Riemann. However, it
was Hadamard [10] who showed the validity of this infinite product expansion.

ξ(s) = ξ(0)
∏
ρ

(1− s

ρ
) (10)
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4 A Proof of Riemann Hypothesis

where ρ are precisely the roots of the Riemann zeta function ζ(s), the fac-
tor ρ and 1− ρ are paired.

2 A proof of RH

This section is planned to give a proof of the Statement 2 of RH. For this
purpose, we need the following results (Lemma 3, Lemma 4, and Lemma 5)
on polynomial equations.

Lemma 3: Given two infinite polynomials

f(s) = a0+a2(s−α)2+a4(s−α)4+a6(s−α)6+ · · ·+a2n(s−α)2n+ · · · (11)

and

f(1−s) = a0+a2(1−s−α)2+a4(1−s−α)4+a6(1−s−α)6+· · ·+a2n(1−s−α)2n+· · ·
(12)

where s is a complex variable, α, a0, a2, a4, a6 + · · · , a2n · · · ∈ R are all real
numbers, and n ∈ N are integers.

Then we have

f(s) = f(1− s) ⇔ (s− α)2 = (1− s− α)2 (13)

Proof: The proof is delivered by mathematical induction.
First, it is obvious that Lemma 3 is true for n = 2, i.e.,

a0 + a2(s− α)2 = a0 + a2(1− s− α)2 ⇔ (s− α)2 = (1− s− α)2 (14)

Second, suppose Lemma 3 is true for n = 2m, then we only need to prove
Lemma 3 is true for n = 2m+ 2.
Thus we begin with the following Eq.(15)

a0+a2(s−α)2+· · ·+a2m(s−α)2m = a0+a2(1−s−α)2+· · ·+a2m(1−s−α)2m ⇔ (s−α)2 = (1−s−α)2

(15)
Now, let’s consider

a0+a2(s−α)2+· · ·+a2m+2(s−α)2m+2 = a0+a2(1−s−α)2+· · ·+a2m+2(1−s−α)2m+2

(16)
i.e.,

(s−α)2{a2+a4(s−α)2+· · ·+a2m+2(s−α)2m} = (1−s−α)2{a2+a4(1−s−α)2+· · ·+a2m+2(1−s−α)2m}
(17)

Since we consider s being complex numbers, then s = α and s = 1 − α are
trivial cases (real numbers), so we only consider s ̸= α, s ̸= 1 − α. Then by
Eq.(17), we get

(s− α)2

(1− s− α)2
=

a2 + a4(1− s− α)2 + · · ·+ a2m+2(1− s− α)2m

a2 + a4(s− α)2 + · · ·+ a2m+2(s− α)2m
(18)
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A Proof of Riemann Hypothesis 5

Without loss of generality, set

(s− α)2

(1− s− α)2
=

a2 + a4(1− s− α)2 + · · ·+ a2m+2(1− s− α)2m

a2 + a4(s− α)2 + · · ·+ a2m+2(s− α)2m
= k ̸= 0

(19)
where k is a real or complex number to be determined.
Then Eq.(19) is equivalent to the following Eq.(20){
ka2 + ka4(s− α)2 + · · ·+ ka2m+2(s− α)2m = a2 + a4(1− s− α)2 + · · ·+ a2m+2(1− s− α)2m

(s− α)2 = k(1− s− α)2

(20)
According to Eq.(15) and the arbitrariness of its coefficients, we see that E-
q.(20) holds if and only if k = 1, i.e.,

a0 + a2(s− α)2 + · · ·+ a2m+2(s− α)2m+2 = a0 + a2(1− s− α)2 + · · ·+ a2m+2(1− s− α)2m+2

⇔
(s− α)2 = (1− s− α)2

(21)

Then we conclude that Lemma 3 is true for n = 2m+ 2.
Finally, by mathematical induction, Lemma 3 is true for any natural number
2n.
That completes the proof of Lemma 3.

Remark 1: The equality condition of two polynomials like Eq.(11) and
Eq.(12) are only decided by their lowest no-constant terms, i.e., the quadratic
terms.

Lemma 4: Given two polynomials

f(s) = a0+a1(s−b1)
2+a2(s−b2)

2+a3(s−b3)
2+ · · ·+an(s−bn)

2+ · · · (22)

and

f(1−s) = a0+a1(1−s−b1)
2+a2(1−s−b2)

2+a3(1−s−b3)
2+· · ·+an(1−s−bn)

2+· · ·
(23)

where s is a complex variable, a0, a1, b1, a2, b2 · · · , an, bn, · · · ∈ R are all real
numbers.

Then we have

f(s) = f(1− s) ⇔ (s− bi)
2 = (1− s− bi)

2, i ∈ N (24)

Proof: The proof is delivered by mathematical induction.

First, Lemma 4 is true for n = 1, i.e.,

a0 + a1(s− b1)
2 = a0 + a1(1− s− b1)

2 ⇔ (s− b1)
2 = (1− s− b1)

2 (25)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2021                   doi:10.20944/preprints202108.0146.v7

https://doi.org/10.20944/preprints202108.0146.v7


6 A Proof of Riemann Hypothesis

Second, suppose Lemma 4 is true for n = m, then we only need to prove
Lemma 4 is true for n = m+ 1.

Thus we begin with the following Eq.(26)

a0 + a1(s− b1)
2 + · · ·+ am(s− bm)2 = a0 + a1(1− s− b1)

2 + · · ·+ am(1− s− bm)2

⇔
(s− bi)

2 = (1− s− bi)
2, i = 1, 2, 3, · · · ,m

(26)

Besides, it is obvious that

am+1(s− bm+1)
2 = am+1(1− s− bm+1)

2

⇔
(s− bm+1)

2 = (1− s− bm+1)
2

(27)

Putting Eq.(26) and Eq.(27) together, we obtain

a0 + a1(s− b1)
2 + · · ·+ am(s− bm)2 + am+1(s− bm+1)

2

= a0 + a1(1− s− b1)
2 + · · ·+ am(1− s− bm)2 + am+1(1− s− bm+1)

2

⇔
(s− bi)

2 = (1− s− bi)
2, i = 1, 2, 3, · · · ,m,m+ 1

(28)

Then we conclude that Lemma 4 is true for n = m+ 1.

Finally, by mathematical induction, Lemma 4 is true for any natural num-
ber n.

That completes the proof of Lemma 4.

Lemma 5: Given two polynomials

f(s) = a0 + a21(s− b1)
2 + a22(s− b2)

2 + a23(s− b3)
2 + · · ·+ a2n(s− bn)

2 + · · ·
+ a41(s− b1)

4 + a42(s− b2)
4 + a43(s− b3)

4 + · · ·+ a4n(s− bn)
4 + · · ·

+ a61(s− b1)
6 + a62(s− b2)

6 + a63(s− b3)
6 + · · ·+ a6n(s− bn)

6 + · · ·
· · ·

(29)

and

f(1− s) = a0 + a21(1− s− b1)
2 + a22(1− s− b2)

2 + a23(1− s− b3)
2 + · · ·+ a2n(1− s− bn)

2 + · · ·
+ a41(1− s− b1)

4 + a42(1− s− b2)
4 + a43(1− s− b3)

4 + · · ·+ a4n(1− s− bn)
4 + · · ·

+ a61(1− s− b1)
6 + a62(1− s− b2)

6 + a63(1− s− b3)
6 + · · ·+ a6n(1− s− bn)

6 + · · ·
· · ·

(30)
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A Proof of Riemann Hypothesis 7

where s is a complex variable, a0, aki, bi ∈ R are all real numbers, k, i ∈ N are
positive integers.

Then we have

f(s) = f(1− s) ⇔ (s− bi)
2 = (1− s− bi)

2, i ∈ N (31)

Proof: Although polynomials Eq.(29) and Eq.(30) seem to be complicated,
they are of the same type with Eq.(11) and Eq.(12) in Lemma 3. By Lemma
3 and Remark 1, the equality condition of f(s) and f(1 − s) are determined
by their lowest non-constant terms, i.e., the quadratic terms. Then by Lemma
4, we conclude that Lemma 5 is true.

To be more specific, comparing the like terms of Eq.(29) and Eq.(30), i.e.,
comparing Eq.(29) and Eq.(30) line by line, it is obvious by Lemma 4 that

f(s) = f(1− s) ⇒ (s− bi)
2 = (1− s− bi)

2, i ∈ N

It is also obvious that

(s− bi)
2 = (1− s− bi)

2, i ∈ N ⇒ f(s) = f(1− s)

That completes the proof of Lemma 5.

Remark 2: In Lemma 5, if the 4th power terms and higher power terms
are composed of the product of quadratic factors, i.e., (s−bi)

2 and (1−s−bi)
2,

then the conclusion remains unchanged.

Next, we present the proof of RH.

Proof of RH: The details are delivered in three steps as follows.

Step 1: Since ξ(s) is an entire function, it is analytic in the whole complex
plane C. Then ξ(s) can be expanded in MacLaurin series (infinite polynomial)
at s = 0, i.e.

ξ(s) = ξ(0) + ξ
′
(0)s+

ξ
′′
(0)

2!
s2 + · · ·+ ξ(n)(0)

n!
sn + · · · , |s| < ∞ (32)

It is obvious that ξ(n)(0)
n! = ξ(n)(s)

n!

∣∣∣
s=0

, n = 0, 1, 2, · · · are all real numbers.

Thus, all the zeros of ξ(s) are the roots of the following infinite algebraic
equation with real coefficients.

0 = ξ(0) + ξ
′
(0)s+

ξ
′′
(0)

2!
s2 + · · ·+ ξ(n)(0)

n!
sn + · · · (33)

According to the well established theory of algebraic equation with real number
coefficients, complex roots always come in pairs (complex conjugate). Further
by Lemma 2, all the zeros of ξ(s) are complex pairs, then we denote the roots
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8 A Proof of Riemann Hypothesis

of Eq.(33) as si = αi ± jβi, βi ̸= 0, i ∈ N.

Therefore Eq.(32) can be rewritten as

ξ(s) = ξ(0)
∏
i∈N

(
1 +

(s− αi)
2

β2
i

)
= ξ(0) +

( (s− α1)
2

β2
1

+
(s− α2)

2

β2
2

+
(s− α3)

2

β2
3

+ · · ·
)
+ · · ·

(34)

Step2: Replacing s with 1− s in Eq.(32) yields

ξ(1−s) = ξ(0)+ξ
′
(0)(1−s)+

ξ
′′
(0)

2!
(1−s)2+· · ·+ ξ(n)(0)

n!
(1−s)n+· · · , |s| < ∞

(35)
With similar reason in Step 1, all the zeros of ξ(1 − s) are the roots of the
following infinite algebraic equation with real coefficients.

0 = ξ(0) + ξ
′
(0)(1− s) +

ξ
′′
(0)

2!
(1− s)2 + · · ·+ ξ(n)(0)

n!
(1− s)n + · · · (36)

with roots si = 1− αi ± jβi, βi ̸= 0, i ∈ N.
Therefore Eq.(35) can be rewritten as

ξ(1− s) = ξ(0)
∏
i∈N

(
1 +

(1− s− αi)
2

β2
i

)
= ξ(0) +

( (1− s− α1)
2

β2
1

+
(1− s− α2)

2

β2
2

+
(1− s− α3)

2

β2
3

+ · · ·
)
+ · · ·

(37)

Step 3: We have by ξ(s) = ξ(1− s) that

ξ(0) +
( (s− α1)

2

β2
1

+
(s− α2)

2

β2
2

+
(s− α3)

2

β2
3

+ · · ·
)
+ · · ·

=ξ(0) +
( (1− s− α1)

2

β2
1

+
(1− s− α2)

2

β2
2

+
(1− s− α3)

2

β2
3

+ · · ·
)
+ · · ·

(38)

By Lemma 5 with Remark 2, Eq.(38) means

(s− αi)
2 = (1− s− αi)

2 (39)

Solving Eq.(39), we get

(s−αi) =

{
−(1− s− αi) ⇒ αi =

1
2

1− s− αi ⇒ No solution in the field of complex numbers, except for s = 1
2 .

(40)
Then we conclude by Eq.(40) that all the zeros of the completed zeta func-

tion ξ(s) have real part equal to 1
2 .
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A Proof of Riemann Hypothesis 9

That completes the proof of the Statement 2 of RH.

Remark 3: According to Lemma 2, we know that the Statement 1 of RH
is also true, i.e., The non-trivial zeros of the Riemann zeta function ζ(s) have
real part equal to 1

2 .

3 Conclusion

A proof of the Riemann Hypothesis is presented based on a new road map:
First, the completed zeta function ξ(s) is expressed as MacLaurin series (infi-
nite polynomial), and further expressed as infinite product by conjugate com-
plex roots; Second, based on Lemma 3, Lemma 4, and Lemma 5, the functional
equation ξ(s) = ξ(1−s) leads to (s−αi)

2 = (1−s−αi)
2 with solution αi =

1
2 .

Then we conclude that the celebrated Riemann Hypothesis is true.
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