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Abstract: In this paper a new approximate procedure is developed for calculating the inclination 

angle of the end points of statically determinate beams. The method is based on the topology com-

parison of simple (hinge-roller combination) supported beam and a resemblant cantilever beam. 

Assuming that the support reactions of the beam are active forces, the virtual displacements at the 

points of the reaction forces are calculated. Based on these values the inclination angle is calculated. 

Several examples are considered and the suggested in this paper, while the procedure is applied for 

various types of structures and loadings. The results, obtained by the suggested numerical proce-

dure, are compared with analytical ones, and they are in good agreement. 

Keywords: elastic curve; simply supported beams of variable cross section; initial guess for slope 

and deflection 

 

1. Introduction 

Beam-like members [1] such as shafts, levers, frame components, beam structures, 

etc. are regularly designed and constructed in the field of mechanical and civil engineer-

ing. Before construction or fabrication of the structure the knowledge of the integrity, i.e., 

the deflection and inclination angle of the structure, is pertinent. The inclination angle has 

also the importance in detection of the modal parameters of the beam which seem to be 

of great significance in bridge and other structural health detection and damage identifi-

cation [2]. For various values of inclination angles the failure modes of components are 

computed and the evaluation of failure with increasing the angle is studied. Inclination 

angles are obtained applying the theoretical approach or using experimental methods. For 

example the inclination angle is measured by Yang and Qin [3] with the inclinometer. 

However, the experimental procedure is complex and connected with troubles and costs. 

To overcome these problems numerous methods for determination of the inclination an-

gle are developed [4-10]. Thus, the large deflection of a simply supported beam loaded in 

the middle has been studied analytically by using the exact solutions and the finite ele-

ment method. In practice, the inclination angles are computed applying the commercial 

simulation packages. Recently, a computational tool, CABDA, has been designed and de-

veloped on MATLAB where the algorithm is based on analytic equations of beam deflec-

tion [1]. The program is tested on steel and brass rectangular beams and the results are 

compared with those obtained experimentally and by simulation. Some differences in the 

results have been observed. The error in numerically obtained solutions is explained with 

the fact that the program uses the linear structure theory, which is not applicable for 

strongly nonlinear systems. If the deformation of the beam is small, the use of linear the-

ory for determining the shape of the elastic curve and the inclination angle is appropriate. 

However, the results obtained according to the linear theory are not convenient for the 

beam with large deformation and strong nonlinearity. In these special cases, modification 

in the numerical solving procedure is necessary and the nonlinear structure theory has to 

be included.  
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Recently, some analytical investigations on calculation of inclination angle of strong 

nonlinear structures were carried out and published. Thus, the inclination angle of a pris-

matic cantilever beam subjected to a combination of inclined end force and tip moment 

was computed by Abu-Alshaikh et al. [11]. The nonlinear theory of bending and the exact 

expression of the curvature are used. Based on an elliptic integral formulation, an accurate 

numerical solution is obtained. Comparing with previously published results, the accu-

racy of numerical solution obtained with the method is more accurate. In terms of Jacobi 

elliptic functions, the solution of equilibrium configuration of an elastic beam, subjected 

to three-point bending, is given by Batista [12]. Results obtained numerically are com-

pared with those of other authors. The relationship between force and deflection of a thin 

elastic beam is given approximately as a polynomial function. The Galerkin method is 

used to obtain an approximate force-deflection characteristic of the [13].To validate the 

result the exact solution and that from the finite element method are used. The analytic 

Homotopy Perturbation Method (HPM) is adopted by Hatami et al. [14]. for predicting 

the deflection of a cantilever beam subjected to static co-planar loading. The analytical 

solution procedure is applied for a Reissner’s beam under force acting at the midpoint 

between two supports [15]. Comparing HPM through numerical results it is demonstrated 

that HPM can be a high efficiency procedure for computing the deflection. However, the 

procedure is rather complex and the computation requires significant time. To overcome 

the computation problem, the aim of this paper is to introduce a new procedure for calcu-

lating the inclination angle for statically determinate beams. The numerical procedure 

would involve less computational time compared with other techniques available in liter-

ature. The method is based on a topology comparison of a simply supported beam and its 

resemblant or to say “modified” cantilever beam. Assuming that the support reactions of 

the beam are active forces, the virtual displacements at the points of the reaction forces 

are calculated. Based on these values the inclination angle is calculated. Several examples 

are considered and the suggested in this paper, while the procedure is applied for various 

types of structures and loadings. The results, obtained by the suggested numerical proce-

dure, are compared with analytical ones, and they are in good agreement. The paper is 

divided into four sections. After the introduction, in section 2, in the frame of materials 

and methods, the theorem of calculation of the inclination angle at the end point of the 

beam is introduced and proved, and the procedure of transforming the boundary value 

problem into initial problem for a simply supported to a cantilever beam with variable 

cross section is presented. As a results, in section 3 the presented procedure is applied on 

examples. In section 4 the paper ends with conclusions 

2. Materials and Methods 

2.1. Procedure for computing of the approximate inclination angle 

Theorem 1. In case of linear model of simple supported beams with two consoles loaded at 

arbitrary places by concentrated and/or distributed forces and/or couple of forces the inclination 

angle of free end of the console on the left side is 

𝜑𝐶 = −
𝑦𝐵 − 𝑦𝐴

𝑙
, (1) 

where l is the distance between the supports, yA and yB are the elastic deflections at cross section 

A and B of the “modified” beam. The “modified” beam is clamped at cross section C, with an identic 

active load system compared to the original model. 

It must be mentioned that the calculated reaction forces are considered as active 

forces in the modified version of the model. Applied notations can be seen in Figure 1. 

There are 6 different loading components of the beam in Figure 1. such as concen-

trated forces and couple of forces acting on consoles on the right or left side or between 

the supports.  
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Figure 1. (a) Scheme of simple supported beam with two consoles loaded at arbitrary places by 

concentrated forces and couple of forces (notations to the proof); (b) „Modified” beam clamped at 

cross section C; (c) Shape of the elastic curve in case of modified beam (φCmod=0, yCmod=0) 

To proof of the theorem/equation (1) is investigated with regard to the different load-

ings of the consoles, the effective span of beam together with the uniform and variable 

cross-section. Theorem/equation (1) is proved for each load cases. Based on the superpo-

sition, the principle of the theorem/equation (1) is true for any simple supported beams 

loaded by concentrated and couple of forces at any places. 

Proof of Theorem 1. The proof of the theorem (1) is done on examples of beams with 

various types of loadings shown in Figure 1, A1-A6. The formula for calculating the elastic 

curves, y(z), of beams of variable cross-section and loaded with bending moment M(z) is 

𝐸𝐼(𝑧)
𝑦"(𝑧)

(1 + 𝑦′2(𝑧))
3
2

= −𝑀(𝑧), (2a) 

where EI(z) is flexural rigidity of the beam, E is modulus of elasticity, I(z) is moment of 

inertia of the cross section about its neutral axis, M(z) represents the bending moment 

function of the beam, z is the position coordinate, while (‘)=d/dz and (“)= d2/dz2 . In our 

calculation the linearized version is applied  

𝐸𝐼(𝑧)𝑦"(𝑧) = −𝑀(𝑧). (2b) 

Based on the principle of superposition, the theorem (1) has to be proved. In Figure 1a), a 

three-part beam, i.e. two consoles and an effective span is shown. 

The simple supported beam with two consoles is loaded at arbitrary places by con-

centrated forces and couple of forces. In Figure 1b), the „modified” beam clamped at cross 

section C can be seen. In Figure 1c), the shape of the elastic curve in case of modified beam 

(φCmod=0, yCmod=0) is shown.  

In Table 1 the results for different types of supported beams loaded with various 

types of loading are presented. The applied notations in the Table 1 and Figure 1, A1-A6 

are: 

• FA and FB are reaction forces in cases of active loading, 

• yA and yB are the elastic deflections of cross section A and B in case of the „mod-

ified” beam,  

• and φC is the inclination angle calculated according to equation (1). 
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Important remark: φC inclination angle of the real beam is determined directly by 

applying the Betti-theorem. The inclination angle in every single case is presented in the 

last column (Table 1).  

Table 1. Summary of physical quantities to prove the presented theorem in case of beam of uniform cross-section 

In previous load cases it can be seen that the inclination angle of cross section φC can 

be determined with the arbitrary lengths of the consoles and the effective span. Moreover, 

φC is independent from the positions of the different loadings. In the above-mentioned 

load cases the flexural rigidity (IE) of the beam is constant along axis z.  

It must be mentioned that equation (1) is valid for beams of variable cross-section as 

well. As it can be seen in Figure A1-A6, concentrated and couple of forces act on the left 

or right consoles or between the supports. 

According to this fact, concerning beams of arbitrary variable cross-section, there are 

different load cases demonstrated in Figure A7. Different types of statically determinate 

beams of variable cross-sections, with various types of loading, are considered, while the 

results are presented in Table 2. 

Table 2. Summary of physical quantities to prove the presented theorem in case of beams of variable cross-section 

Applied notations in the head of Table 1 and 2 are the same. The inclination angle φC 

in all of cases is determined in both way again. 

In Figure A7a)-b) the console is subjected to loads on its left side. Due to the sym-

metry, it is enough to prove equation/theorem (1) for inclination angle φB. In this case the 

beam is clamped at cross section B.  

Model FA FB yA yB φC 

Figure 2 𝐹𝑘(𝑘𝐹 + 𝑙)

𝑙
 

𝐹𝑘𝑘𝐹

𝑙
 −

𝐹𝑘𝑘𝐹
3

6𝐼𝐸
 −

𝐹𝑘(𝑘𝐹 + 𝑙)𝑘𝐹(𝑘𝐹 + 2𝑙)

6𝐼𝐸
 −

𝐹𝑘𝑘𝐹(3𝑘𝐹 + 2𝑙)

6𝐼𝐸
 

Figure 3 𝑀𝑘

𝑙
 

𝑀𝑘

𝑙
 −

𝑀𝑘𝑘𝑀
2

2𝐼𝐸
 −

𝑀𝑘(3𝑘𝑀
2 + 6𝑘𝑀𝑙 + 2𝑙2)

6𝐼𝐸
 

𝑀𝑘(𝑙 + 3𝑘𝑀)

3𝐼𝐸
 

Figure 4 𝐹𝑙𝑏𝐹

𝑙
 

𝐹𝑙𝑎𝐹

𝑙
 0 

−
𝐹𝑙𝑎𝐹𝑏𝐹(𝑎𝐹 + 2𝑏𝐹)

6𝐼𝐸
 

𝐹𝑙𝑎𝐹𝑏𝐹(𝑎𝐹 + 2𝑏𝐹)

6𝑙𝐼𝐸
 

Figure 5 𝑀𝑙

𝑙
 

𝑀𝑙

𝑙
 0 

−
𝑀𝑙(2𝑏𝑀

2 − 2𝑎𝑀𝑏𝑀 − 𝑎𝑀
2 )

6𝐼𝐸
 

𝑀𝑙(2𝑏𝑀
2 − 2𝑎𝑀𝑏𝑀 − 𝑎𝑀

2 )

6𝑙𝐼𝐸
 

Figure 6 𝐹𝑚𝑚𝐹

𝑙
 

𝐹𝑚(𝑚𝐹 + 𝑙)

𝑙
 

0 𝐹𝑚𝑚𝐹𝑙2

6𝐼𝐸
 −

𝐹𝑚𝑚𝐹𝑙

6𝐼𝐸
 

Figure 7 𝑀𝑚

𝑙
 

𝑀𝑚

𝑙
 0 𝑀𝑚𝑙2

6𝐼𝐸
 −

𝑀𝑚𝑙

6𝐼𝐸
 

Model FA FB yA yB φC 

Figure 8 
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Figure 

8(b) 
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0
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Figure 

8(c) 

Fb

a + b
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a + b
 0 
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(a + b)E
∫

z2

I(z)

b

0

dz

−
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∫

z2 − (a + b)z
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dz 

−
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∫
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b

0
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+
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Figure 

8(d) 
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0
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Applying notations of Figure A7a, inclination angle of cross section B of the original 

beam,  

φB =
Fk

l2E
∫

zl − z2

I(z)

l

0

dz. (3) 

In case of the „modified” beam i.e. our current beam is clamped at cross section B and 

loaded by concentrated force and reaction forces of simple supported beam (Figure A7a) 

the elastic deflections at cross section A and B can be determined on the basis of the Betti-

theorem,  

yA = −
Fk

lE
∫

zl−z2

I(z)

l

0
dz,   yB = 0. (4) 

According to equation (1),  

φB = −
yA−yB

l
= −

1

l
 [−

Fk

lE
∫

zl−z2

I(z)

l

0
dz − 0] =

Fk

l2E
∫

zl−z2

I(z)

l

0
dz, (5) 

which complies with equations (1) and (3).  

Applying notations of Figure A7b, inclination angle of cross section B of real beam,  

φB = −
M

l2E
∫

zl − z2

I(z)

l

0

dz. (6) 

In case of the „modified” beam i.e. – in this case – clamped at cross section B loaded by 

couple of forces and reaction forces of simple supported beam (Figure A7b) the elastic 

deflections at cross section A and B with regard to the Betti-theorem,  

yA =
M

lE
∫

zl−z2

I(z)

l

0
dz,   yB = 0. (7) 

According to equation (1),  

φB = −
yA−yB

l
= −

1

l
 [

M

lE
∫

zl−z2

I(z)

l

0
dz − 0] = −

M

l2E
∫

zl−z2

I(z)

l

0
dz, (8) 

which complies with equations (1) and (6).  

Comparing the results, obtained by the Betti-theorem and equation (2), the theorem 

is proved. □ 

2.2. Method of transformation boundary value problem into initial value problem 

In subchapter 2.1. the proof of theorem/equation (1) for statically determinate beams 

with uniform and/or variable cross-sections, loaded by different way, can be seen. φC in-

clination angle is the initial slope of the statically determinate (original) beam. Based on 

the superposition principle, the effect of active load components of the beam are inde-

pendent from each other, therefore the theorem/equation (1) is valid independently in the 

linear dimension.  

Based on the theorem/equation (1), the elastic curve of statically determinate beams 

can be determined by the following steps:  

• Calculation of reaction forces,  

• Determination of moment function M(z) of the beam, 

• Substitution of the moment function into differential equation (2b) , 

• Numerical solution of the differential equation with initial conditions y(0)=0, y’(0)=0. 

At this step the beam is treated as „modified”, i.e. it is clamped at cross section C,  

• Applying obtained deflections yA and yB the initial slope, φC= -(yB-yA)/l, 

• Repeating the numerical process with initial conditions y(0)=0, y’(0)=φC values of de-

flections yA and yB which are obtained similarly, 

• Repeating the numerical process with initial conditions y(0)=-yA, y’(0)=φC. As a result, 

the shape of the elastic curve of the real beam is obtained. 
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3. Results 

3.1. Numerical examples 

In presented numerical examples equation (2a) is applied. 

3.1.1. Simply supported beam 

Example 1. As an example, the task is to determine numerically the elastic curve of 

cantilevered simply supported beam shown in Figure 2. 

 

Figure 2. Cantilevered simply supported beam 

The following numerical data are given: F=2000 N, q=4000 N/m, Mo=4000 Nm, k=1000 

mm, l=3500 mm, m=1500 mm, E=210 GPa, I=328 cm4.  

For the given numerical values the reaction forces of the supports:  

 𝐹𝐵 =
1

𝑙
(𝑀𝑜 +

𝑞

2
𝑙2 − 𝐹𝑚), 

  FC =
1

𝑙
(𝐹(𝑙 + 𝑚) − 𝑀𝑜 −

𝑞

2
(𝑘2 − (𝑙 + 𝑚)2),     

(9) 

while the moment(z) function is plotted in Figure 3.  

 

Figure 3. Moment function(z) of the cantilevered simply supported beam 

Three segments along the beam are evident and the differential equations according 

to (2a) of the elastic curve for each segment are formed. The obtained relations are  

0 ≤ z ≤ k,       y1
" = −

Mo

IE
(1 + y′2)

3

2,  (10) 

k ≤ z ≤ k + l,  

 y2
" = −

1

IE
(

q

2
z2 − (

q

2
l +

Mo−Fm

l
+ qk) z + Mo

l+k

l
−

Fmk

l
+

q

2
k2 +

q

2
lk)(1 + y′2)

3

2, 

(11) 

k + l ≤ z ≤ k + l + m,   

  y3
" = −

F

IE
(k + l + m − z)(1 + y′2)

3

2.  

(12) 

Let us solve the above-mentioned equations numerically for initial values y’o=0 and 

yo=0. Namely, it is assumed that the left end of the beam is fixed and corresponds to a 
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cantilever. Therefore, the moment function as a function of coordinate z does not yet cor-

respond with the original beam. The obtained result is plotted in Figure 4.  

Obviously the shape of the elastic curve is not suitable to the original loading and the 

constraint relations. In order to get the accurate initial values let us carry out the following 

transformations. 

 

Figure 4. Elastic curve, as a function of z, of the cantilever for initial conditions y’o=0 and yo=0 

Rotation around axis perpendicular to xy plane 

Creating the ratio of differences between deflections of cross-sections B and C and 

between their positions coordinates an angle can be obtained as follows:  

𝜑𝐶 = −
𝑦𝐶 − 𝑦𝐵

𝑧𝐶 − 𝑧𝐵

=
−19,52532706mm − (−2,90391530)mm

4500 mm − 1000 mm
= 

= −0,0047489747 rad. 

(13) 

This angle with opposite sign can be treated as initial inclination of cross-section A, i.e. 

yA
′ = − = 0,0047489747 rad. (14) 

The numerical calculation of differential equations of the elastic curves is repeated with 

initial values: 

𝑦𝐴 = 0,   yA
′ = 0,0047489747 rad. (15) 

The obtained elastic curve is plotted in Figure 5. 

It can be noticed that for initial conditions (15) the values of deflection at supports B and 

C are equal: yB = yC = 1,84504132 mm. After this recognition translation along axis y 

seems obvious.  

 

Figure 5. Elastic curve for initial values: 𝑦𝐴 = 0 𝑚𝑚, 𝑦𝐴
′ = 0,0047489747 𝑟𝑎𝑑 

Translation along axis y 

Now, the curve is translated along y axis for the value   𝑦𝐴 = −𝑦𝐵 = −𝑦𝐶 =

−1,84504132 𝑚𝑚, to move the supports in the position with zero deflection. Starting with 

numerical procedure and applying the calculated initial values yA = −1,84504132 mm,

yA
′ = 0,0047489747 rad the elastic curve of the beam are obtained and plotted in Figure 

6. In order to check the obtained results the Betti-theorem (Table 3) is applied. Results 

obtained in different ways are compared to each other and summarized in Table 3.  
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Figure 6. Elastic curve determined based on numerically and analytically obtained initial condi-

tions 

3.1.2. Cantilevered simply supported beam having sinusoidal variable circular cross-

section 

Example 2. The sketch of the cantilevered simply supported beam can be seen in the 

previous example. In this case there is a beam having variable circular cross-section. Its 

diameter is described by equation d(z)=100+30sin(0.004712z), [mm] (Figure 7.). Other in-

put data are the same. 

Starting with numerical procedure again and applying the calculated initial values 

yA = −2,98325081 mm, yA
′ = 0,00433389 rad the elastic curve of the beam is obtained 

and plotted in Figure 8. In order to check the obtained results the Betti-theorem is applied. 

 

Figure 7. Shape of the simply supported beam having variable circular cross-section (side view) 

 

Figure 8. Elastic curve determined and based on obtained initial conditions 

Results obtained in different ways are compared to each other and summarized in 

Table 3. Comparing the results obtained numerically for the nonlinear model and analyt-

ically for the linearized system (Betti-theorem) it can be concluded that the difference be-

tween them is negligible, moreover it can be seen the effect of nonlinearity is negligible as 

well.  
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Table 3. Comparison of deflections of cross-sections A and D obtained in different ways  

Example 3.1.1. yA, mm yD, mm 

Numerical transformation method 

- rotation and translation  

- transformation of the boundary value prob-

lem into the initial value problem 

-1.8452 -0,4083 

Betti-theorem for beams of variable cross-sec-

tion 
-1.8398 -0,4127 

Example 3.1.2. yA, mm yD, mm 

Numerical transformation method 

- rotation and translation  

- transformation of the boundary value prob-

lem into the initial value problem 

-2,9832 0,4438 

Betti-theorem  

for beams of variable cross-section 

-2,9830 0,4408 

3.1.3. Cantilevered statically indeterminate beam to the first degree having variable circu-

lar cross-section 

Example 3. As third example a statically indeterminate beam with three supports, 

having variable circular cross-section is shown in Figure 9. The task is the same: to deter-

mine numerically the elastic curve of the beam. Following numerical data are given: 

F1=6000 N, F2=16000 N, q=12000 N/m, Mo=3000 Nm, a=1000 mm, E=210 GPa. 

 

Figure 9. Cantilevered beam with three supports together with the shape of the of the beam hav-

ing variable circular cross-section (side view) 

As a result of applying the Clapeyron-equation the moment(z) function can be seen 

in Figure 10.  

 

Figure 10. Moment function of the cantilevered beam with three supports 
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By applying of above described numerical procedure again, calculated initial values 

are yA = 9,1415991914 mm, yA
′ = 0,01335125 rad. Obtained elastic curve of the beam 

plotted in Figure 11. 

 

Figure 11. Elastic curve determined and based on obtained initial conditions 

4. Conclusions 

It can be concluded: 

• The initial slope of the arbitrary loaded simple supported beam can be determined 

with high accuracy if the structure is modified into a clamped-free beam. For that 

case the inclination angle of the free end of the beam is the ratio between the differ-

ence of elastic deflections of cross sections in the supporting points of the ‘modified 

beam’ and the distance between supports. 

• For the case of small deformation when the nonlinearity is weak the suggested pro-

cedure for calculation of the inclination angle is applicable with certain accuracy.  

• However, if the deformation is large and the nonlinearity is strong serious number 

of iterative steps are necessary to reach the demanded accuracy. 

• Applying the suggested formula for inclination angle the elastic curves of simple 

supported beams can be determined numerically. 

• Based on the suggested procedure the boundary value problem of simple supported 

and continuous beam is transformed into initial value problem which is a special and 

effective application of the shooting method. The method is stable and easy to use.  

• Results obtained by the method and compared with those obtained with Betti theo-

rem for the linear models show a good agreement.  

Appendix A 

 

Figure A1: Simple supported beam loaded by concentrated force on the left console at arbitrary 

place, shape of elastic curve (strong enlargement), moreover sketch of „modified” beam i.e. 

clamped at cross section C 
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Figure A2. Simple supported beam loaded by couple of force on the left console at arbitrary place, 

shape of elastic curve (strong enlargement), moreover sketch of „modified” beam i.e. clamped at 

cross section C 

 

Figure A3. Simple supported beam loaded by concentrated force on effective span at arbitrary 

place, shape of elastic curve (strong enlargement), moreover sketch of „modified” beam i.e. 

clamped at cross section 
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Figure A4. Simple supported beam loaded by couple of force on effective span at arbitrary place, 

shape of elastic curve (strong enlargement), moreover sketch of „modified” beam i.e. clamped at 

cross section C 

 

Figure A5. Simple supported beam loaded by concentrated force on the right console at arbitrary 

place, shape of elastic curve (strong enlargement), moreover sketch of „modified” beam i.e. 

clamped at cross section C 
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Figure A6. Simple supported beam loaded by couple of force on the right console at arbitrary 

place, shape of elastic curve (strong enlargement), moreover sketch of „modified” beam i.e. 

clamped at cross section C 

 

Figure A7. (a-d) Simple supported beam loaded by concentrated force or couple of forces on the 

end of the cantilever or between its supports. The moment of inertia of the cross section about its 

neutral axis is continuous function of position coordinate z 
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