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Abstract: In this paper a new approximate procedure is developed for calculating the inclination
angle of the end points of statically determinate beams. The method is based on the topology com-
parison of simple (hinge-roller combination) supported beam and a resemblant cantilever beam.
Assuming that the support reactions of the beam are active forces, the virtual displacements at the
points of the reaction forces are calculated. Based on these values the inclination angle is calculated.
Several examples are considered and the suggested in this paper, while the procedure is applied for
various types of structures and loadings. The results, obtained by the suggested numerical proce-
dure, are compared with analytical ones, and they are in good agreement.

Keywords: elastic curve; simply supported beams of variable cross section; initial guess for slope
and deflection

1. Introduction

Beam-like members [1] such as shafts, levers, frame components, beam structures,
etc. are regularly designed and constructed in the field of mechanical and civil engineer-
ing. Before construction or fabrication of the structure the knowledge of the integrity, i.e.,
the deflection and inclination angle of the structure, is pertinent. The inclination angle has
also the importance in detection of the modal parameters of the beam which seem to be
of great significance in bridge and other structural health detection and damage identifi-
cation [2]. For various values of inclination angles the failure modes of components are
computed and the evaluation of failure with increasing the angle is studied. Inclination
angles are obtained applying the theoretical approach or using experimental methods. For
example the inclination angle is measured by Yang and Qin [3] with the inclinometer.
However, the experimental procedure is complex and connected with troubles and costs.
To overcome these problems numerous methods for determination of the inclination an-
gle are developed [4-10]. Thus, the large deflection of a simply supported beam loaded in
the middle has been studied analytically by using the exact solutions and the finite ele-
ment method. In practice, the inclination angles are computed applying the commercial
simulation packages. Recently, a computational tool, CABDA, has been designed and de-
veloped on MATLAB where the algorithm is based on analytic equations of beam deflec-
tion [1]. The program is tested on steel and brass rectangular beams and the results are
compared with those obtained experimentally and by simulation. Some differences in the
results have been observed. The error in numerically obtained solutions is explained with
the fact that the program uses the linear structure theory, which is not applicable for
strongly nonlinear systems. If the deformation of the beam is small, the use of linear the-
ory for determining the shape of the elastic curve and the inclination angle is appropriate.
However, the results obtained according to the linear theory are not convenient for the
beam with large deformation and strong nonlinearity. In these special cases, modification
in the numerical solving procedure is necessary and the nonlinear structure theory has to
be included.
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Recently, some analytical investigations on calculation of inclination angle of strong
nonlinear structures were carried out and published. Thus, the inclination angle of a pris-
matic cantilever beam subjected to a combination of inclined end force and tip moment
was computed by Abu-Alshaikh et al. [11]. The nonlinear theory of bending and the exact
expression of the curvature are used. Based on an elliptic integral formulation, an accurate
numerical solution is obtained. Comparing with previously published results, the accu-
racy of numerical solution obtained with the method is more accurate. In terms of Jacobi
elliptic functions, the solution of equilibrium configuration of an elastic beam, subjected
to three-point bending, is given by Batista [12]. Results obtained numerically are com-
pared with those of other authors. The relationship between force and deflection of a thin
elastic beam is given approximately as a polynomial function. The Galerkin method is
used to obtain an approximate force-deflection characteristic of the [13].To validate the
result the exact solution and that from the finite element method are used. The analytic
Homotopy Perturbation Method (HPM) is adopted by Hatami et al. [14]. for predicting
the deflection of a cantilever beam subjected to static co-planar loading. The analytical
solution procedure is applied for a Reissner’s beam under force acting at the midpoint
between two supports [15]. Comparing HPM through numerical results it is demonstrated
that HPM can be a high efficiency procedure for computing the deflection. However, the
procedure is rather complex and the computation requires significant time. To overcome
the computation problem, the aim of this paper is to introduce a new procedure for calcu-
lating the inclination angle for statically determinate beams. The numerical procedure
would involve less computational time compared with other techniques available in liter-
ature. The method is based on a topology comparison of a simply supported beam and its
resemblant or to say “modified” cantilever beam. Assuming that the support reactions of
the beam are active forces, the virtual displacements at the points of the reaction forces
are calculated. Based on these values the inclination angle is calculated. Several examples
are considered and the suggested in this paper, while the procedure is applied for various
types of structures and loadings. The results, obtained by the suggested numerical proce-
dure, are compared with analytical ones, and they are in good agreement. The paper is
divided into four sections. After the introduction, in section 2, in the frame of materials
and methods, the theorem of calculation of the inclination angle at the end point of the
beam is introduced and proved, and the procedure of transforming the boundary value
problem into initial problem for a simply supported to a cantilever beam with variable
cross section is presented. As a results, in section 3 the presented procedure is applied on
examples. In section 4 the paper ends with conclusions

2. Materials and Methods
2.1. Procedure for computing of the approximate inclination angle

Theorem 1. In case of linear model of simple supported beams with two consoles loaded at
arbitrary places by concentrated and/or distributed forces and/or couple of forces the inclination
angle of free end of the console on the left side is

YB — Ya

po = -2, M

where | is the distance between the supports, yA and yB are the elastic deflections at cross section
A and B of the “modified” beam. The “modified” beam is clamped at cross section C, with an identic
active load system compared to the original model.

It must be mentioned that the calculated reaction forces are considered as active
forces in the modified version of the model. Applied notations can be seen in Figure 1.

There are 6 different loading components of the beam in Figure 1. such as concen-
trated forces and couple of forces acting on consoles on the right or left side or between
the supports.
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Figure 1. (a) Scheme of simple supported beam with two consoles loaded at arbitrary places by
concentrated forces and couple of forces (notations to the proof); (b) ,Modified” beam clamped at
cross section C; (c) Shape of the elastic curve in case of modified beam (@cmo=0, ycmoi=0)

To proof of the theorem/equation (1) is investigated with regard to the different load-
ings of the consoles, the effective span of beam together with the uniform and variable
cross-section. Theorem/equation (1) is proved for each load cases. Based on the superpo-
sition, the principle of the theorem/equation (1) is true for any simple supported beams
loaded by concentrated and couple of forces at any places.

Proof of Theorem 1. The proof of the theorem (1) is done on examples of beams with
various types of loadings shown in Figure 1, A1-A6. The formula for calculating the elastic
curves, y(z), of beams of variable cross-section and loaded with bending moment M(z) is

"(z
El(z) L)s - _M(2), 2a)
(1+y72(2))?

where El(z) is flexural rigidity of the beam, E is modulus of elasticity, I(z) is moment of
inertia of the cross section about its neutral axis, M(z) represents the bending moment
function of the beam, z is the position coordinate, while (‘)=d/dz and (“)= d?/dz? . In our
calculation the linearized version is applied

El(2)y"(z) = —M(2). (2b)

Based on the principle of superposition, the theorem (1) has to be proved. In Figure 1a), a
three-part beam, i.e. two consoles and an effective span is shown.

The simple supported beam with two consoles is loaded at arbitrary places by con-
centrated forces and couple of forces. In Figure 1b), the ,,modified” beam clamped at cross
section C can be seen. In Figure 1c), the shape of the elastic curve in case of modified beam
(cmod=0, ycmoa=0) is shown.

In Table 1 the results for different types of supported beams loaded with various
types of loading are presented. The applied notations in the Table 1 and Figure 1, A1-A6
are:

. Fa and Fs are reaction forces in cases of active loading,

. ya and ys are the elastic deflections of cross section A and B in case of the ,mod-
ified” beam,

. and ¢c is the inclination angle calculated according to equation (1).
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Important remark: @ inclination angle of the real beam is determined directly by
applying the Betti-theorem. The inclination angle in every single case is presented in the
last column (Table 1).

Table 1. Summary of physical quantities to prove the presented theorem in case of beam of uniform cross-section

Model Fa Fs yA yB @c
Figure 2 Fy(kp + 1) Fekp F k3 _ Fy(kp + Dkp(kp + 20) _ Fikp(Bkp + 21)
l l ~ GIE 6IE 6IE
Figure 3 M, My M, k% M, (3kZ + 6kyl + 21?) M, (I + 3ky)
! ! __2IE _ 6IE 3IE
Figure 4 Fl_bF % 0 _ Fiapbg(ar + 2bg) Fiapbg(ap + 2bg)
! l 6IE 6LIE
Figure 5 M, M, 0 M,(2b% — 2ayby — aiy) M,(2b% — 2ayby — a%)
! ! _ 6IE 6LIE
Figure 6 Eamg Ep(me +1) 0 Fymgl? _ Eamgl
l l 6IE 61E
Figure 7 My, M, 0 M, I? _ M_ml
l l 6IE 61E

In previous load cases it can be seen that the inclination angle of cross section ¢c can
be determined with the arbitrary lengths of the consoles and the effective span. Moreover,
@c is independent from the positions of the different loadings. In the above-mentioned
load cases the flexural rigidity (IE) of the beam is constant along axis z.

It must be mentioned that equation (1) is valid for beams of variable cross-section as
well. As it can be seen in Figure A1-A6, concentrated and couple of forces act on the left
or right consoles or between the supports.

According to this fact, concerning beams of arbitrary variable cross-section, there are
different load cases demonstrated in Figure A7. Different types of statically determinate
beams of variable cross-sections, with various types of loading, are considered, while the
results are presented in Table 2.

Table 2. Summary of physical quantities to prove the presented theorem in case of beams of variable cross-section

Model Fa | Fs ‘ YA yB @c
k k 1 k 1
Figure 8| F(k+1) Fk F [ kz — z? Frk+l1)—z? Fk [ z? F z Fk [ z?
—_— — ——f—dz —= | — Z——f—dZ —f—dz+—f—dz
(a) 1 1 EJ Ix(z) E Ix(2) 1IE J L1(2) EJ Ik(2) 12E ) 1;(2)
1] Q [1] 0] [1]
k k 1 k 1
Figure M M Mfk_zd Mka_Zd +MJ' z? q Mj 1 q Mj z2 q
8(b) 1 1 EJ) L@ z e 2T e z E) @) 272K e z
b b
Fa J‘ z? d Fa j z? d
——— | ——=<dz ————=| ==<dz
Figure Fb Fa (a + b)E 5 I(Z) (a + b)ZE J I(Z)
0 b b
8(c) a+b a+b Fb 722—(a+b)z , P 722—(a+b)z
(a+b)E 1(z) z (a+b)%E ) 1(2)
M a(a+b)—z2 M a(a+b)—z2
— Z
2
Figure M M i (a+b)E) b 1(z) (a+Db)%E ) b 1(z)
a+ a+
8(d) atb atb Fb ((a+b) —2)? __ b ((@a+b) —2)?
(a+b)E 1(z) z (a + b)2E 1(z)
a a

Applied notations in the head of Table 1 and 2 are the same. The inclination angle ¢c
in all of cases is determined in both way again.

In Figure A7a)-b) the console is subjected to loads on its left side. Due to the sym-
metry, it is enough to prove equation/theorem (1) for inclination angle s. In this case the
beam is clamped at cross section B.
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Applying notations of Figure A7a, inclination angle of cross section B of the original
beam,

1

_ Fk Zl—sz 3
ms—ﬁf—l@ z ()

0

In case of the ,modified” beam i.e. our current beam is clamped at cross section B and
loaded by concentrated force and reaction forces of simple supported beam (Figure A7a)
the elastic deflections at cross section A and B can be determined on the basis of the Betti-
theorem,

Fk (171-22
A= OZI(ZZ) dz, yg=0. (4)

According to equation (1),

_ _yayp _ _1[_ Fk clzl-7? _ ]_E 1 z1-z2
B = 1 1[ 11201(z)dZ 0_12E01(z) , ®)

which complies with equations (1) and (3).
Applying notations of Figure A7b, inclination angle of cross section B of real beam,
1
M J zl — 72 q ©)
PBTTRE) Tz
0

In case of the ,modified” beam i.e. — in this case — clamped at cross section B loaded by
couple of forces and reaction forces of simple supported beam (Figure A7b) the elastic
deflections at cross section A and B with regard to the Betti-theorem,

_ M 1z1-z2
Ya =g

dz, yg=0. (7)
According to equation (1),

_ _yays _ _1[M 1z1-z2 _ _ M 1z1-22
®B = 1~ 1 LE fo 1(z) dz O] ~ 12e’o 1(») dz, (8)

which complies with equations (1) and (6).
Comparing the results, obtained by the Betti-theorem and equation (2), the theorem
is proved. o

2.2. Method of transformation boundary value problem into initial value problem

In subchapter 2.1. the proof of theorem/equation (1) for statically determinate beams
with uniform and/or variable cross-sections, loaded by different way, can be seen. ¢c in-
clination angle is the initial slope of the statically determinate (original) beam. Based on
the superposition principle, the effect of active load components of the beam are inde-
pendent from each other, therefore the theorem/equation (1) is valid independently in the
linear dimension.

Based on the theorem/equation (1), the elastic curve of statically determinate beams
can be determined by the following steps:

e  (Calculation of reaction forces,

e  Determination of moment function M(z) of the beam,

e  Substitution of the moment function into differential equation (2b),

e  Numerical solution of the differential equation with initial conditions y(0)=0, y’(0)=0.

At this step the beam is treated as ,modified”, i.e. it is clamped at cross section C,

e  Applying obtained deflections ya and ys the initial slope, @c=-(ys-ya)/l,

e  Repeating the numerical process with initial conditions y(0)=0, y’(0)=¢c values of de-
flections ya and ys which are obtained similarly,

e  Repeating the numerical process with initial conditions y(0)=-ya, y’(0)=¢c. As a result,
the shape of the elastic curve of the real beam is obtained.
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3. Results

3.1. Numerical examples
In presented numerical examples equation (2a) is applied.
3.1.1. Simply supported beam

Example 1. As an example, the task is to determine numerically the elastic curve of
cantilevered simply supported beam shown in Figure 2.

b
F
A B| lq |C Y z
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> >

Figure 2. Cantilevered simply supported beam

The following numerical data are given: F=2000 N, g=4000 N/m, Mo=4000 Nm, k=1000
mm, 1=3500 mm, m=1500 mm, E=210 GPa, I=328 cm*.
For the given numerical values the reaction forces of the supports:

Fg=3(M, + 212 — Fm),

. . ©)
Fc = T(F(l +m) — M, — > (k= (U +m)?),

while the moment(z) function is plotted in Figure 3.
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Figure 3. Moment function(z) of the cantilevered simply supported beam

Three segments along the beam are evident and the differential equations according
to (2a) of the elastic curve for each segment are formed. The obtained relations are

" 3
0<z<k y;=-22(1+y?) (10)
k<z<k+], (11)
"o _ 1,2 _ () Mo=Fm Itk _ Fmk
y, = IE(ZZ (21+ . +qk)z+M01 . +

3
2K+ 21K (1 +y"2)e,

k+1<z<k+1+m, 12)
" 3
Y3 = —%(k+l+m—z)(1+y’2)2.

Let us solve the above-mentioned equations numerically for initial values y’o=0 and
yo=0. Namely, it is assumed that the left end of the beam is fixed and corresponds to a
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cantilever. Therefore, the moment function as a function of coordinate z does not yet cor-
respond with the original beam. The obtained result is plotted in Figure 4.

Obviously the shape of the elastic curve is not suitable to the original loading and the
constraint relations. In order to get the accurate initial values let us carry out the following

transformations.

0,0

<o —\TGGQ\ 2000 3000 4000 5000 6000
10,0
-15,0 —

\
20,0 e
50 \
30,0
——y(num), (mm)

Figure 4. Elastic curve, as a function of z, of the cantilever for initial conditions y’0=0 and yo=0

Rotation around axis perpendicular to xy plane

Creating the ratio of differences between deflections of cross-sections B and C and
between their positions coordinates an angle can be obtained as follows:

Ye—yp _ —19,52532706mm — (—2,90391530)mm _
Zc—275 4500 mm — 1000 mm B (13)

= —0,0047489747 rad.

Pc=—

This angle with opposite sign can be treated as initial inclination of cross-section A, i.e.
ya = —¢ = 0,0047489747 rad. (14)

The numerical calculation of differential equations of the elastic curves is repeated with
initial values:

y, =0, yh = 0,0047489747 rad. (15)

The obtained elastic curve is plotted in Figure 5.

It can be noticed that for initial conditions (15) the values of deflection at supports B and
C are equal: yg = yc = 1,84504132 mm. After this recognition translation along axis y
seems obvious.

3,0

20 T~

W TN yd T
y AN yd

’ 1000 \G 0 3000 / 4000 5000 6000
e K\’/
-2,0

=——y(num), (mm)

Figure 5. Elastic curve for initial values: y, = 0 mm, y, = 0,0047489747 rad

Translation along axis 'y

Now, the curve is translated along y axis for the value y, = -yz = -y, =
—1,84504132 mm, to move the supports in the position with zero deflection. Starting with
numerical procedure and applying the calculated initial values y, = —1,84504132 mm,
ya = 0,0047489747 rad the elastic curve of the beam are obtained and plotted in Figure
6. In order to check the obtained results the Betti-theorem (Table 3) is applied. Results
obtained in different ways are compared to each other and summarized in Table 3.
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Figure 6. Elastic curve determined based on numerically and analytically obtained initial condi-
tions

3.1.2. Cantilevered simply supported beam having sinusoidal variable circular cross-
section

Example 2. The sketch of the cantilevered simply supported beam can be seen in the
previous example. In this case there is a beam having variable circular cross-section. Its
diameter is described by equation d(z)=100+30sin(0.004712z), [mm] (Figure 7.). Other in-
put data are the same.

Starting with numerical procedure again and applying the calculated initial values
ya = —2,98325081 mm, yj, = 0,00433389 rad the elastic curve of the beam is obtained
and plotted in Figure 8. In order to check the obtained results the Betti-theorem is applied.

—dfy —afr

Figure 7. Shape of the simply supported beam having variable circular cross-section (side view)
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40
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Figure 8. Elastic curve determined and based on obtained initial conditions

Results obtained in different ways are compared to each other and summarized in
Table 3. Comparing the results obtained numerically for the nonlinear model and analyt-
ically for the linearized system (Betti-theorem) it can be concluded that the difference be-
tween them is negligible, moreover it can be seen the effect of nonlinearity is negligible as
well.
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Table 3. Comparison of deflections of cross-sections A and D obtained in different ways

Example 3.1.1. ya, mm yp, mm

Numerical transformation method
- rotation and translation

-1.8452 -0,4083
- transformation of the boundary value prob-

lem into the initial value problem

Betti-theorem for beams of variable cross-sec- 1.8398 0,4127

tion
Example 3.1.2. ya, mm yp, mm

Numerical transformation method

- rotation and translation 12,0832 0,4438

- transformation of the boundary value prob-
lem into the initial value problem
Betti-theorem -2,9830 0,4408
for beams of variable cross-section

3.1.3. Cantilevered statically indeterminate beam to the first degree having variable circu-
lar cross-section

Example 3. As third example a statically indeterminate beam with three supports,
having variable circular cross-section is shown in Figure 9. The task is the same: to deter-
mine numerically the elastic curve of the beam. Following numerical data are given:
F1=6000 N, F2=16000 N, q=12000 N/m, M.=3000 Nm, a=1000 mm, E=210 GPa.

by
Fi F, Mo
A ‘% I(z)E \% A D
a__,le Z2a le a |, a . a
) E— S
: L T e L X 4D I [ U]

Figure 9. Cantilevered beam with three supports together with the shape of the of the beam hav-
ing variable circular cross-section (side view)

As a result of applying the Clapeyron-equation the moment(z) function can be seen
in Figure 10.

8000

> /N A
o \ / |\ /
2000 1000 \399/ 3000 \ 4000 / 5000 6000
-4000 \ /

-6000

—M(z) Nm

Figure 10. Moment function of the cantilevered beam with three supports
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By applying of above described numerical procedure again, calculated initial values
are ya = 9,1415991914 mm, y, = 0,01335125 rad. Obtained elastic curve of the beam
plotted in Figure 11.

20

00

20 0 1000 2000 3000 + 5000 6000
40

60
80
-10,0

——y{translated)

Figure 11. Elastic curve determined and based on obtained initial conditions

4. Conclusions

It can be concluded:

e  The initial slope of the arbitrary loaded simple supported beam can be determined
with high accuracy if the structure is modified into a clamped-free beam. For that
case the inclination angle of the free end of the beam is the ratio between the differ-
ence of elastic deflections of cross sections in the supporting points of the ‘modified
beam’ and the distance between supports.

e  For the case of small deformation when the nonlinearity is weak the suggested pro-
cedure for calculation of the inclination angle is applicable with certain accuracy.

e  However, if the deformation is large and the nonlinearity is strong serious number
of iterative steps are necessary to reach the demanded accuracy.

e Applying the suggested formula for inclination angle the elastic curves of simple
supported beams can be determined numerically.

e Based on the suggested procedure the boundary value problem of simple supported
and continuous beam is transformed into initial value problem which is a special and
effective application of the shooting method. The method is stable and easy to use.

e  Results obtained by the method and compared with those obtained with Betti theo-
rem for the linear models show a good agreement.

Appendix A
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Figure A1: Simple supported beam loaded by concentrated force on the left console at arbitrary
place, shape of elastic curve (strong enlargement), moreover sketch of ,,modified” beam i.e.
clamped at cross section C
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Figure A2. Simple supported beam loaded by couple of force on the left console at arbitrary place,
shape of elastic curve (strong enlargement), moreover sketch of ,modified” beam i.e. clamped at

cross section C
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Figure A3. Simple supported beam loaded by concentrated force on effective span at arbitrary
place, shape of elastic curve (strong enlargement), moreover sketch of , modified” beam i.e.

clamped at cross section
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Figure A4. Simple supported beam loaded by couple of force on effective span at arbitrary place,
shape of elastic curve (strong enlargement), moreover sketch of ,modified” beam i.e. clamped at

cross section C
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Figure A5. Simple supported beam loaded by concentrated force on the right console at arbitrary
place, shape of elastic curve (strong enlargement), moreover sketch of ,modified” beam i.e.

clamped at cross section C
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Figure A6. Simple supported beam loaded by couple of force on the right console at arbitrary
place, shape of elastic curve (strong enlargement), moreover sketch of , modified” beam i.e.
clamped at cross section C
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Figure A7. (a-d) Simple supported beam loaded by concentrated force or couple of forces on the
end of the cantilever or between its supports. The moment of inertia of the cross section about its
neutral axis is continuous function of position coordinate z
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