Preprint
Review

Applied Self-Supervised Learning: Review of the State-of-the-Art and Implementations in Medicine

Altmetrics

Downloads

532

Views

587

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

09 August 2021

Posted:

11 August 2021

You are already at the latest version

Alerts
Abstract
Machine learning has become an increasingly ubiquitous technology, as big data continues to inform and influence everyday life and decision-making. Currently in healthcare, as well as in most other industries, the two most prevalent machine learning paradigms are supervised learning and transfer learning. Both practices rely on large-scale, manually annotated datasets to train increasingly complex models. However, the requirement of data to be manually labeled leaves an excess of unused, unlabeled data available in both public and private data repositories. Self-supervised learning (SSL) is a growing area of machine learning that has the ability to take advantage of unlabeled data. Contrary to other machine learning paradigms, SSL algorithms create artificial supervisory signals from unlabeled data and pretrain algorithms on these signals. The aim of this review is two-fold: firstly, we provide a formal definition of SSL, divide SSL algorithms into their four unique subsets, and review the state-of-the-art published in each of those subsets between the years of 2014-2020. Second, this work surveys recent SSL algorithms published in healthcare, in order to provide medical experts with a clearer picture of how they can integrate SSL into their research, with the objective of leveraging unlabeled data.
Keywords: 
Subject: Public Health and Healthcare  -   Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated