Preprint
Article

Analysis of the Northern Hemisphere Atmospheric Circulation Response to Arctic Ice Reduction Based on Simulation Results

Altmetrics

Downloads

256

Views

254

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 August 2021

Posted:

11 August 2021

You are already at the latest version

Alerts
Abstract
The amplified Arctic warming is one of several factors influencing atmospheric dynamics. In this work, we consider a series of numerical experiments to identify the direct role of the Arctic sea ice reduction process in forming climatic trends in the northern hemisphere. Aimed at this, we used two more or less independent mechanisms of ice reduction. The first is traditionally associated with increasing the concentration of carbon dioxide in the atmosphere from the historic level of 360 ppm to 450 ppm and 600 ppm. This growth increases air temperature and decreases the ice volume. The second mechanism is associated with a reduction in the reflectivity of ice and snow. We assume that comparing the results of these two experiments allows us to judge the direct role of ice reduction. The most prominent consequences of ice reduction, as a result, were the weakening of temperature gradient at the tropopause level in mid-latitudes, the slower zonal wind at 50-60∘N, intensification of wave activity in Europe, Western America, and Chukotka, and its weakening in the south of Siberia and Kazakhstan. We also consider how climate change may alter regimes such as blocking and stationary Rossby waves. The study used the INM-CM48 climate system model .
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated