Abstract: Coal bed methane (CBM) reservoirs are complex systems whose properties differ from those of conventional reservoirs. Coal seams are dual-porosity systems that comprise the porosities of the matrix and cleat system. Gas in the coal seams can be stored as free gas in the cleat system and as adsorbed gas in the porous medium. The flow mechanisms of the natural gas through the formation include desorption, diffusion, and Darcy’s flow regimes. The permeability of CBM reservoirs is more sensitive to pressure variations than conventional gas reservoirs. To study the flow behavior of CBM reservoirs it is mandatory to use a model that considers their unique characteristics. The objective of this study was to propose a physical and mathematical model of production performance for horizontal wells in CBM reservoirs whose permeability is dependent on pressure. A solution for the model was obtained by applying Pedrosa´s transformation, perturbation theory, Laplace transformation, the point source method, and Sthefest´s algorithm. The solution to this problem was validated with previous work thoroughly. The type curves of the model were built and the pressure transient behavior of the model was analyzed and discussed. The effects of several parameters on pressure behavior were also discussed.
Keywords:
Subject:
Engineering - Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.