Preprint
Article

Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification

Altmetrics

Downloads

218

Views

248

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 August 2021

Posted:

18 August 2021

You are already at the latest version

Alerts
Abstract
The central goal of few-shot scene classification is to learn a model that can generalize well to a novel scene category (UNSEEN) from only one or a few labeled examples. Recent works in the remote sensing (RS) community tackle this challenge by developing algorithms in a meta-learning manner. However, most prior approaches have either focused on rapidly optimizing a meta-learner or aimed at finding good similarity metrics while overlooking the embedding power. Here we propose a novel Task-Adaptive Embedding Learning (TAEL) framework that complements the existing methods by giving full play to feature embedding’s dual roles in few-shot scene classification - representing images and constructing classifiers in the embedding space. First, we design a lightweight network that enriches the diversity and expressive capacity of embeddings by dynamically fusing information from multiple kernels. Second, we present a task-adaptive strategy that helps to generate more discriminative representations by transforming the universal embeddings into task-specific embeddings via a self-attention mechanism. We evaluate our model in the standard few-shot learning setting on two challenging datasets: NWPU-RESISC4 and RSD46-WHU. Experimental results demonstrate that, on all tasks, our method achieves state-of-the-art performance by a significant margin.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated