Preprint
Article

An Integration of Deep Network with Random Forests Framework for Image Quality Assessment in Real-Time

Altmetrics

Downloads

208

Views

275

Comments

0

Submitted:

14 August 2021

Posted:

18 August 2021

You are already at the latest version

Alerts
Abstract
In recent years, data providers are generating and streaming a large number of images. More particularly, processing images that contain faces have received great attention due to its numerous applications, such as entertainment and social media apps. The enormous amount of images shared on these applications presents serious challenges and requires massive computing resources to ensure efficient data processing. However, images are subject to a wide range of distortions in real application scenarios during the processing, transmission, sharing, or combination of many factors. So, there is a need to guarantee acceptable delivery content, even though some distorted images do not have access to their original version. In this paper, we present a framework developed to estimate the images' quality while processing a large number of images in real-time. Our quality evaluation is measured using an integration of a deep network with random forests. In addition, a face alignment metric is used to assess the facial features. Experimental results have been conducted on two artificially distorted benchmark datasets, LIVE and TID2013. We show that our proposed approach outperforms the state-of-art methods, having a Pearson Correlation Coefficient (PCC) and Spearman Rank Order Correlation Correlation Coefficient (SROCC) with subjective human scores of almost 0.942 and 0.931 while minimizing the processing time from 4.8ms to 1.8ms.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated