Preprint
Article

Hybrid HCNN-KNN Model Enhances Age Estimation Accuracy in Orthopantomography

Altmetrics

Downloads

644

Views

764

Comments

1

Submitted:

11 April 2022

Posted:

12 April 2022

You are already at the latest version

Alerts
Abstract
Age estimation in dental radiographs Orthopantomography (OPG) is a medical imaging technique that physicians and pathologists utilise for disease identification and legal matters. For example, for estimating post-mortem interval, detecting child abuse, drug trafficking, and identifying an unknown body. Recent development in automated image processing models improved the age estimation's limited precision to an approximate range of +/- one year. While this estimation is often accepted as accurate measurement, age estimation should be as precise as possible in most serious matters, such as homicide. Current age estimation techniques are highly dependent on manual and time-consuming image processing. Age estimation is often a time-sensitive matter in which the image processing time is vital. Recent development in Machine learning-based data processing methods has decreased the imaging time processing; however, the accuracy of these techniques remains to be further improved. We proposed an ensemble method of image classifiers and transfer learning techniques to enhance the accuracy of age estimation using OPGs from one year to a couple of months (1-3-6). This hybrid model is based on convolutional neural networks (CNN) and K nearest neighbours (KNN). The hybrid (HCNN-KNN) model was used to investigate 1,922 panoramic dental radiographs of patients aged 15 to 23. These OPGs were obtained from the various teaching institutes and private dental clinics in Malaysia. To minimise the chance of overfitting in our model, we used the principal component analysis (PCA) algorithm and eliminated the features with high correlation. To further enhance the performance of our hybrid model, we performed systematic image pre-processing. We applied a series of classifications to train our model. We have successfully demonstrated that combining these innovative approaches has improved the classification and segmentation and thus the age-estimation outcome of the model. Our findings suggest that our innovative model, for the first time, to the best of our knowledge, successfully estimated the age in classified studies of one year old, six months, three months and one-month-old cases with accuracies of 99.98, 99.96, 99.87, and 98.78 respectively.
Keywords: 
Subject: Medicine and Pharmacology  -   Dentistry and Oral Surgery
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated